倒装芯片衬底粘接材料对大功率LED热特性的影响默认栏目默认栏目广州市 ...

我的日志

1998年美国Lumileds Lighting公司封装出世界上{dy}个大功率LED(1W LUXOEN 器件),使LED器件从以前的指示灯应用变成可以替代传统照明的新型固体光源,引发了人类历史上继白炽灯发明以来的又一场照明革命。1W LUXOEN器件使LED的功率从几十毫瓦一跃超过1000毫瓦,单个器件的光通量也从不到1个 lm飞跃达到十几个lm。大功率LED由于芯片的功率密度很高,器件的设计者和制造者必须在结构和材料等方面对器件的热系统进行优化设计。
目前GaN基外延衬底材料有两大类[1] :一类是以日本“日亚化学”为代表的蓝宝石;一类是美国CREE公司为代表的SiC衬底。传统的蓝宝石衬底GaN芯片结构如图1所示,电极刚好位于芯片的出光面。在这种结构中,小部分p-GaN层和“发光”层被刻蚀,以便与下面的n-GaN层形成电接触。光从最上面的p-GaN层取出。p-GaN层有限的电导率要求在p-GaN层表面再沉淀一层电流扩散的金属层。这个电流扩散层由Ni和Au组成,会吸收部分光,从而降低芯片的出光效率。为了减少发射光的吸收,电流扩展层的厚度应减少到几百纳米。厚度的减少反过来又限制了电流扩散层在p-GaN层表面均匀和可靠地扩散大电流的能力。因此这种p型接触结构制约了LED芯片的工作功率。同时这种结构pn结的热量通过蓝宝石衬底导出去,导热路径较长,由于蓝宝石的热导系数较金属低(为35W/m·K),因此,这种结构的LED芯片热阻会较大。此外,这种结构的p电极和引线也会挡住部分光线进入器件封装,所以,这种正装LED芯片的器件功率、出光效率和热性能均不可能是{zy}的。为了克服正装芯片的这些不足,Lumileds Lighting公司发明了倒装芯片(Flipchip)结构,如图2所示。在这种结构中,光从蓝宝石衬底取出,不必从电流扩散层取出。由于不从电流扩散层取光,这样不透光的电流扩散层可以加厚,增加Flipchip的电流密度。同时这种结构还可以将pn结的热量直接通过金属凸点导给热导系数高的硅衬底(为145W/m·K),散热效果更优;而且在pn 结与p电极之间增加了一个反光层,又xx了电极和引线的挡光,因此这种结构具有电、光、热等方面{zy}的特性。本文仅对蓝宝石GaN倒装芯片的衬底粘接材料对大功率LED器件热特性的影响进行分析。
我们知道,表征系统热性能的一个主要参数是系统的热阻。热阻的定义为:在热平衡的条件下,两规定点(或区域)温度差与产生这两点温度差的热耗散功率之比。热阻符号:Rθ或 Rth;热阻单位:K/W或℃/ W一般倒装型大功率LED表面贴装到金属线路板,也可以再安装外部热沉,增加散热效果,其内部结构以及外部应用结构如图3所示[2,3]。大功率LED芯片电极上焊接的数个BUMP(金球)与Si衬底上对应的BUMP通过共晶焊接在一起,Si衬底通过粘接材料与器件内部热沉粘接在一起。为了有较好的取光效果,热沉上制作有一个聚光杯,芯片安放在杯的中央,热沉选用高导热系数的金属材料如铜或铝。稳态时LED热阻的等效连接如图4所示。根据热阻的定义,可以得出

你可以通过这个链接引用该篇文章:http://fuxinzm.bokee.com/viewdiary.16448033.html

个人形象

郑重声明:资讯 【倒装芯片衬底粘接材料对大功率LED热特性的影响默认栏目默认栏目广州市 ...】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——