关于雷电防护中金属氧化锌阀片使用研究

译文:
摘要:在雷电防护过程中,由雷击电磁脉冲引起的干扰破坏,目前通常使用电涌保护器来实现对微电子设备的保护。国际上电涌保护器采用的金属氧化锌阀片主要采取两种连接方法:一个是以美、英为主的采取多片金属氧化锌并联使用的方法,使用的标准为UL1449第二版,另一个是以法、德为主德采取单片金属氧化锌技术的方法,使用的标准为IEC61643-1-2。金属氧化锌阀片并联使用的优点可以得到较大的通流容量,防止单片金属氧化锌阀片击穿后冒烟和爆炸,但欧洲及国内一些专家认为多片金属氧化锌阀片并联使用,由于漏流、压敏电压等性能不一致,造成能量分配不均匀,产生阀片热崩溃。作者带这这些问题在美国JOSLYN公司实验室做了试验,得出了一些非常有价值的测试数据。分析认为:金属氧化锌阀片只要进行一定的筛选、配对、并采取适当的措施是可以并联使用的。 关键词:雷电防护、氧化锌阀片、并联使用、测试研究 一、前言 大气中的雷电现象会给人类的生存和社会活动带来危害,对它的防护问题一直是人们关心的问题。随着社会经济和科学技术的发展,微电子设备的广泛应用,我们不仅耀注意预防对影响建筑物或其他物体的直击雷灾害,而且对雷击电磁脉冲(LEMP)的防护更给足够地重视,目前国内外在实施雷电防护过程中对于LEMP的防护,通常是采用电涌保护器(SPD)(SURGE PROTECTIVE DEVICES)限制瞬态过电压和引导泄放电涌电流来实现,现在一般在SPD中使用的主要器件为:金属氧化锌(MOV)阀片、放电间隙、气体或固体放电管、滤波线圈、瞬变二极管(SIDACTOR)等,而使用在低压线路(220V~/380V~)中的SPD、绝大多数是使用MOV阀片。在低压电路中为了达到25~50ns高速响应时间,国际上MOV阀片的直径一般控制在14~20mm左右,{zd0}通流容量一般在60~70KA,电流波形为8/20μs。美国在UL1449第二版《瞬时电压浪涌保护器标准》TVSS(TRANSIENT VOLTAGE SURGE SUPPRESION)中建议[7],采用多片MOV阀片并联使用,以达到更大的通流容量。由于目前在国内外多片MOV阀片并联技术的测试试验和分析研究工作还不多,所以对这一技术在雷电防护中使用也存在不同看法。本文针对上述问题,试图通过在美国JOSLYN公司实验室的测试试验,以及对样本和数据的分析,对多片MOV阀片并联技术的使用给出了肯定的答复。 二、MOV阀片的主要性能 MOV阀片的主要成分为氧化锌(ZnO),并渗有少量的其它氧化物,外层由两层铅和一层塑料涂层组成[8],在低压电源系统中,一般采用圆形的直径为14mm和20mm的MOV阀片。在直流电压为3KV下,电容量分别为5600PF和22000PF,标称通流容量分别为4KA和6.5KA,电流波形为8/20μs。MOV阀片两端电压低于压敏电压时,呈高阻抗状态。当电压高于压敏电压时,由于阀片内的齐纳效应和雪崩效应,迅速呈低阻抗。电压低于压敏电压又回到高阻抗状态。MOV阀片的好坏主要决定以下一些参数。 1、压敏电压 当温度为20℃,一般认为在MOV阀片上有1mA电流流过的时候,相应加在该阀片上的电压叫做压敏电压。应按如下公式计算: Vn≥(VNII×√2 /0.7)1.2 式中:VN――MOV阀片压敏电压值 VNH――电源额定电压值(有效值) 压敏电压冲击前后的变化率应小于±10% 2、漏电流 MOV阀片在标称持续工作电压下流过阀片的电流称为漏电流。按国家标准应小于30μA。冲击前后的变化率应小于200%。 3、残压及残压比 在规定波形、标称放电电流冲击氧化锌阀片,阀片两端测到的电压峰值,称为残压。残压与压敏电压的比值,称为残压比。 一般情况下残压比应≤3。 三、MOV阀片的并联使用 在保证高速响应的前提下,要提高TVSS或SPD的通流容量,一般采取多片并联使用。欧洲及国内一些专家认为多片MOV阀片并联使用,由于阀片性能不一致,可能产生雷电能量分配不均匀,造成MOV阀片的温度升高,性能下降,导致热崩溃,或提早老化、失效,因此不主张采取多片氧化锌阀片并联使用。但目前国际上使用在低压电源配电系统上的单片MOV阀片的{zd0}通流容量只能达到60-70KA(8/20μs)满足不了实际工程的需要,所以对于MOV阀片并联使用的研究具有十分重要的意义。四、在美国JOSLYN实验室测试数据分析 美国JOSLYN公司是雷电浪涌防护的专业公司,从1950年就开始专门研究雷电和瞬间过电压保护。JOSLYN公司从1979年以来一直生产并行MOV的TVSS、产品遍布世界130多个国家的通信、电力、交通、航空、金融、计算机网络等。美国总统座机空军一号就采用了该公司的产品。 作者与美国JOSLYN公司实验室的Hans Steinhaff博士进行了以下的测试。 (一)测试仪器 1、Keytek 587型8/20μs波形标准冲击试验仪。 2、Keytek S1/S3、S4/S5/S6及S7的浪涌网络单元。 3、Peason 301x型电子宽带电流变换器。 4、7A26双踪放大器。 5、Tekronix7835存储式示波器。 (二)样本的抽取 本次试验一共抽取三组样本,A组是随机从一批产品中抽取50片MOV阀片;B组从一批阀片中选取1mA压敏电压{zg}和{zd1}的MOV阀片各25片;C组是从一批MOV阀片产品中抽出压敏电压{zg}的25片,从另一批产品中抽出压敏电压{zd1}的25片样品。所有的MOV阀片在同一等级通流容量下冲击两次,表1显示了通过每组MOV阀片受冲击后电流的平均值及占总电流的百分比。表中A1、A2是从A组中选出每两片MOV阀片配为一对(共25对),并联后经同一电流冲击两次测得得平均数值。B1、B2是从B组中选出压敏电压{zg}和{zd1}得MOV阀片各片配为一对(共25对),并联后经同一电流冲击两次测得平均数值。C1、C2是从C组中选出压敏电压{zg}和{zd1}的MOV阀片各片配为一对(共25对),并联后经同一电流冲击两次测得的平均数值。 表1 每组MOV阀片电流平均值(A)及百分比 冲击电流(A) A组电流 百分比% B组电流 百分比% C组电流 百分比% A1 A2 A1 A2 B1 B2 B1 B2 C1 C2 C1 C2 125 71 66 52 48 114 22 84 16 120 16 88 12 500 250 245 51 49 370 130 74 26 390 100 80 20 750 380 375 50 50 530 225 70 30 560 180 76 24 3000 1500 1490 50 50 1750 1200 59 41 1800 1200 60 40 10000 4750 4750 50 50 5250 4200 56 44 5400 4000 57 43 表2显示了MOV阀片冲击前后,1mA压敏电压变化情况,并且给出了冲击前后正负极1mA压敏电压的变化。 表2 冲击前后正负极压敏电压平均值(V) 样品 冲击前 冲击后 正 负 正 负 A1 238 239 240 243 A2 237 238 239 242 B1 225 224 224 224 B2 251 251 251 255 C1 227 227 226 229 C2 254 254 248 257 (三) 数据分析 从表1不难看出,A组同一批发货样品中抽出的MOV阀片,即使没有经过严格筛选、配对,不管在小电流还是大电流冲击情况下,并联两片MOV阀片上吸收的能量基本平衡,但在B组同一批产品中,抽出MOV阀片压敏电压{zg}和{zd1}配对。在小电流(125-750A)冲击下,两片并联MOV阀片上吸收的能量是不平衡的,{zd0}误差在84%和16%。在大电流(3000~10000A)冲击下,两片并联MOV阀片吸收的能量基本平衡,{zd0}误差在59%和41%。C组为不同批次中抽取的{zg}和{zd1}压敏电压MOV阀片配对,在小电流(125~750A)冲击下,两片并联MOV阀片上吸收能量更不平衡,{zd0}误差在88%和12%,比B组还要大,但在大电流(3000~10000A)冲击下,两片并联MOV阀片上电流也还基本平衡。 五、JOSLYN实验室做的其它辅助测试 (一)、近来JOSLYN公司从一批产品中任意抽取6各使用3片20mmMOV阀片并联的TVSS,冲击电流为1500A,波形为8/20μs,经过10000次冲击试验(记录了2500次的测试),其中5各TVSS经过10000次冲击后,1mA下的压敏电压变化率≤±10%,另一个在8500次冲击测试后,1mA下压敏电压变化率>10%。 (二)、另一个测试将4片MOV阀片并联,不用刻意去匹配,冲击电流为10000A,波形8/20μs,一共冲击220次,然后分别在测试前、中、后4片并联MOV阀片的1mA压敏电压变化率为+7.3~7.5%,每一片MOV阀片的1mA压敏电压变化率为+5.3~6.7%。 (三)、另一个制造商生产的TVSS,也使用上述同样的方法测试,在220次冲击后,总的1mA压敏电压变化率为12.4~20.9%,在10000A冲击电流下,40~60次冲击后,1mA压敏电压产生了大于10%的变化。 六、结论 (一)、由于MOV阀片性能不一致,特别是1mA下压敏电压不一致,会造成在小电流(125~750A)冲击下多片MOV阀片并联时,每个阀片吸收雷电能量不一致。 (二)、在大电流(3000~10000A)冲击下,即使MOV阀片性能不太一致,多片并联使用时每片MOV阀片吸收雷电能量基本一致。 (三)、因此,只要对MOV阀片略加挑选配对,且利用保险丝阻抗帮助平衡电流,多片MOV阀片是可以并联使用的,不会因吸收能量不一致而产生热崩溃或提早老化。

“ ”是由提供的国际阀门新闻,译文仅供参考。另外,中国气动阀门网还提供相关产品搜索:、、、、等。

 

 

原文:
Abstract: In the lightning protection process, from the lightning electromagnetic pulse caused by interference and sabotage, the present surge protector is commonly used to achieve the protection of microelectronic devices. Surge protectors use the international metal zinc oxide varistor connected in two main ways: one is based on U.S. and British-based multi-chip metal zinc oxide to the method used in parallel, using the standard UL1449 2nd Edition, and the other one is based on France, Germany, Germany-based technology to monolithic metallic zinc oxide method, using the standard IEC61643-1-2. Metallic zinc oxide valve can be in parallel use of the advantages of a larger Flow capacity, to prevent the single metal MOV smoke and explosions, after the breakdown, but some experts believe that the European and domestic multi-piece metallic zinc oxide varistor in parallel using the , due to leakage flow, varistor voltage performance is inconsistent, resulting in uneven energy distribution, resulting in heat valve collapse. By these issues with the company's laboratory in the United States has done a test JOSLYN obtained some very valuable test data. Analysis: zinc valve metal oxide to a certain extent as long as the screening, matching, and to take appropriate measures can be used in parallel. Keywords: lightning protection, zinc oxide valve, parallel use, testing, research I. Introduction Lightning phenomena in the atmosphere will give the survival of humanity and social activities to bring harm to its protection issue has been people's concern. With the socio-economic and scientific and technological development, extensive use of microelectronics devices, we not only Yao attention to the prevention of the impact of buildings or other objects of the lightning directly stroke disasters, but also for the lightning electromagnetic pulse (LEMP) protection has also given adequate attention , at home and abroad during the implementation of lightning protection for the LEMP protection, usually with surge protector (SPD) (SURGE PROTECTIVE DEVICES) limit transient over-voltage, and guide the discharge surge current to achieve , is now generally used in the SPD main components are: Zinc metal oxide (MOV) valve, discharge gap, gas or solids discharge tube, filter coils, transient diode (SIDACTOR) so on, and used in low voltage line (220V ~ / 380V ~) in the SPD, the vast majority of the use of MOV valves. In the low-voltage circuits in order to achieve 25 ~ 50ns high-speed response time, the international MOV valves control the diameter of generally about 14 ~ 20mm, maximum-flow capacity is generally 60 ~ 70KA, current waveform of 8/20μs. The United States in the second edition of UL1449, "Transient Voltage Surge Protective Device Standards" TVSS (TRANSIENT VOLTAGE SURGE SUPPRESION) proposed in [7], using multi-chip MOV valves used in parallel in order to achieve a larger flow passage capacity. At home and abroad due to the current multi-chip technology, MOV valves in parallel tests and analytical research work is not over, so the use of this technology in lightning protection there are different views. In this paper, the above questions in an attempt by the United States JOSLYN's laboratory tests, as well as sample and data analysis, multi-chip MOV valves in parallel the use of technology is given a positive response. 2, MOV valve of the main performance MOV valves are mainly composed of zinc oxide (ZnO), and the infiltration of a small amount of other oxides, the outer layer consists of two layers of lead and a layer of plastic coating composition [8], in the low-voltage power system, the general use of circular a diameter of 14mm and 20mm of the MOV valves. 3KV in DC voltage, the capacitance, respectively 5600PF and 22000PF, nominal Flow capacities are 4KA and 6.5KA, current waveform of 8/20μs. MOV valves at both ends when the voltage is lower than the varistor voltage, showing a high impedance state. When the voltage is higher than the varistor voltage, due to valve-chip Zener effect and the avalanche effect, quickly showed low impedance. Voltage is lower than the varistor voltage back to high-impedance state. MOV valve key decisions good or bad some of the parameters below. 1, varistor voltage When the temperature is 20 ℃, is generally believed that in the MOV valves, there 1mA current flows through the time, the corresponding increase in the valve on-chip voltage is called the varistor voltage. Should be the following formula: Vn ≥ (VNII × √ 2 / 0.7) 1.2 Formula: VN - MOV Valve varistor voltage value VNH - Power rated voltage value (rms) Varistor voltage change rate before and after the impact should be less than ± 10% 2, leakage current MOV valves in the nominal continuous operating voltage of the current flowing through valve called the leakage current. According to the national standard should be less than 30μA. The rate of change before and after the impact should be less than 200%. 3, residual pressure and residual pressure ratio The required waveforms, Nominal discharge current impact of zinc oxide valve, valves at both ends of the voltage measured peak, known as the residual pressure. Residual pressure and the ratio of varistor voltage, called the residual pressure ratio. Under normal circumstances residual pressure ratio should be ≤ 3. 3, MOV valve in parallel using the In ensuring high-speed response of the premise, to raise the TVSS or SPD's Flow capacity, in general, the use of multi-chip parallel. Some experts believe that European and domestic multi-chip MOV valves used in parallel, due to valve performance, inconsistent, uneven energy distribution lightning may have caused the temperature rise MOV valves, performance degradation, leading to thermal breakdown, or premature aging, failure, therefore do not advocate the adoption of multi-chip parallel use of zinc oxide varistor. But the international use of the low-voltage power distribution system on a single MOV valves Flow capacity of the biggest only reach 60-70KA (8/20μs) can not satisfy the practical engineering needs, it is for the MOV valves used in this study parallel is of great significance. 4, in the United States JOSLYN laboratory test data analysis U.S. JOSLYN lightning surge protection is a professional company in 1950 began specializing in lightning and transient overvoltage protection. JOSLYN company from 1979, has been produced in parallel MOV's TVSS, products in more than 130 countries around the world, communications, electric power, transportation, aviation, finance, computer networks. U.S. presidential plane Air Force One on the use of the company's products. Author's laboratory and the United States JOSLYN Dr. Hans Steinhaff the following tests. (A) Test Instruments 1, Keytek 587 standard-type impact tester 8/20μs waveform. 2, Keytek S1/S3, S4/S5/S6 and S7 of the surge network elements. 3, Peason 301x electronic wideband current converter. 4,7 A26 dual-trace amplifier. 5, Tekronix7835 storage-type oscilloscope. (B) of samples collected The experiment collected a total of three sets of samples, A group is drawn randomly from a group of products, 50 MOV valves; B group selected from a group of valves 1mA film varistor voltage of the MOV the highest and lowest of all 25 valves; C group is a group of products, valves MOV varistor voltage, the highest out of 25, from another group of products, the lowest varistor voltage out of 25 samples. All the MOV valve flow passage at the same level of capacity under the impact of the two, Table 1 shows the adoption of each MOV valves after the impact with the average current and the percentage of the total current. Table A1, A2 is selected from the A group, MOV valves each with two to a pair (25 pairs), in parallel through the same current is measured by the impact of the two were average. B1, B2 is selected from the B group had the highest and lowest varistor voltage MOV valves each piece with a pair (25 pairs), in parallel through the same current is measured by the impact of the two average. C1, C2 is selected from the C group, the highest and lowest varistor voltage of the MOV valves each piece with a pair (25 pairs), in parallel through the same current of the impact of the two measured average. Table 1 the average current of each MOV valve (A) and percentage Impulse Current (A) A group of current percentage of% B group the percentage of current-current percentage of%% C group A1 A2 A1 A2 B1 B2 B1 B2 C1 C2 C1 C2 1,257,166,524,811,422 8,416,120,168,812 5,002,502,455,149,370,130 74263901008020 7,503,803,755,050,530,225 70305601807624 3000 1500 1,490,505,017,501,200 5,941,180,012,006,040 10000 4750 4,750,505,052,504,200 5,644,540,040,005,743 Table 2 shows the impact of before and after the MOV valves, 1mA varistor voltage changes, and gives the before and after the impact of positive and negative 1mA varistor voltage change. Table 2 before and after the positive and negative impact on the average varistor voltage (V) Sample shock before the shock Positive and negative positive and negative A1 238 239 240 243 A2 237 238 239 242 B1 225 224 224 224 B2 251 251 251 255 C1 227 227 226 229 C2 254 254 248 257 (C) data analysis From Table 1 is easy to see, A group of samples of the same batch shipped out of the MOV valves, even without rigorous screening, matching, regardless of the impact of small current or high current circumstances, the parallel two MOV valve chip a basic balance between the energy absorbed by , but in B group with a number of products, MOV valve out of the highest and lowest varistor voltage matching. In the small current (125-750A) under the impact of two parallel MOV valve chip to absorb the energy is unbalanced, and the maximum error in 84% and 16%. In the high current (3000 ~ 10000A) under the impact of two parallel MOV valve to absorb the energy of the basic balance, the maximum error at 59% and 41% respectively. C group, different batches of extract of the highest and lowest varistor voltage MOV valve pairs, in the small current (125 ~ 750A) under the impact of two parallel MOV valve chip to absorb more energy imbalance, the maximum error in 88% and 12 %, bigger than the B group, but in high-current (3000 ~ 10000A) under the impact of two parallel on-chip current of MOV valve still basically balanced. 5, JOSLYN other auxiliary laboratories doing tests (A), recently JOSLYN company from taking any of a number of products, the use of three 20mmMOV all six valves in parallel TVSS, the impact of current is 1500A, the waveform of 8/20μs, over 10,000 sub-impact test (2500 times recorded test) , 5 of which over 10,000 times each TVSS after impact, 1mA under the varistor voltage change rate of ≤ ± 10%, the other in 8500 after the second impact test, 1mA under the varistor voltage change rate "10%. (B), another test will be 4 MOV valves in parallel, do not deliberately go to match the impact of current of 10000A, waveform 8/20μs, a total of 220 shocks, and then were tested before, during and after four parallel MOV valves varistor voltage change of 1mA rate of +7.3 ~ 7.5%, each one of 1mA valve MOV varistor voltage change rate of +5.3 ~ 6.7%. (C), another manufacturer of TVSS, also used the same method to test, in the 220 attacks, the total 1mA varistor voltage change rate of 12.4 ~ 20.9%, the impact of current, in the 10000A, 40 ~ 60 times after impact, 1mA varistor voltage generated more than 10% of the changes. 6 Conclusion (A), due to inconsistent performance, MOV valves, especially under the pressure-sensitive voltage of 1mA is inconsistent, this will result in small current (125 ~ 750A) under the impact of multi-chip parallel MOV valves, each valve is inconsistent absorption of energy by lightning. (B), in the high current (3000 ~ 10000A) the impact, even if the MOV valve performance is not consistent, when using multi-chip parallel MOV valves per unit of energy absorbed by lightning are basically the same. (C), so as long as the right to select matching MOV valve slightly, and the use of fuse resistance to help balance the current, multi-chip MOV valves can be used in parallel, and will not absorb the heat energy generated inconsistent crash or premature aging.


原文来源:

郑重声明:资讯 【关于雷电防护中金属氧化锌阀片使用研究】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——