1. 绝缘材料的耐温能力是怎样划分的?
答:我国现分为六级,即A、E、B、F、H、C。
(1) A级绝缘材料{zd0}允许工作温度为105℃
(2) E级绝缘材料{zd0}允许工作温度为120℃
(3) B级绝缘材料{zd0}允许工作温度为130℃
(4) F级绝缘材料{zd0}允许工作温度为155℃
(5) H级绝缘材料{zd0}允许工作温度为180℃
(6) C级绝缘材料{zd0}允许工作温度为180℃以上。
2. 简述感应电动机的构造和工作原理。
答:感应电动机的工作原理是这样的,当三相定子绕组通过三相对称的交流电电流时,产生一个旋转磁场,这个旋转磁场在定子内膛转动,其磁力线切割转子上的导线,在转子导线中感应起电流。由于定子磁场与转子电流相互作用力产生电磁力矩,于是,定子旋转磁场就拖着具有载流导线的转子转动起来。
3. 感应电动机启动时为什么电流大?而启动后电流会变小?
答:当感应电动机处在停止状态时,从电磁的角度看,就象变压器,接到电源去的定子绕组相当于变压器的一次线圈,成闭路的转子绕组相当于变压器被短路的二次线圈;定子绕组和转子绕组间无电的的联系,只有磁的联系,磁通经定子、气隙、转子铁芯成闭路。当合闸瞬间,转子因惯性还未转起来,旋转磁场以{zd0}的切割速度——同步转速切割转子绕组,使转子绕组感应起可能达到的{zg}的电势,因而,在转子导体中流过很大的电流,这个电流产生抵消定子磁场的磁能,就象变压器二次磁通要抵消一次磁通的作用一样。
定子方面为了维护与该时电源电压相适应的原有磁通,遂自动增加电流。因为此时转子的电流很大,故定子电流也增得很大,甚至高达额定电流的4~7倍,这就是启动电流大的缘由。
启动后为什么小:随着电动机转速增高,定子磁场切割转子导体的速度减小,转子导体中感应电势减小,转子导体中的电流也减小,于是定子电流中用来抵消转子电流所产生的磁通的影响的那部分电流也减小,所以定子电流就从大到小,直到正常。
4. 启动电流大有无危险?为什么有的感应电动机需用启动设备?
答:一般说来,由于启动过程不长,短时间流过大电流,发热不太厉害,电动机是能承受的,但如果正常启动条件被破坏,例如规定轻载启动的电动机作重载启动,不能正常升速,或电压低时,电动机长时间达不到额定转速,以及电动机连续多次启动,都将有可能使电动机绕组过热而烧毁。
电动机启动电流大对并在同一电源母线上的其它用电设备是有影响的。这是因为供给电动机大的启动电流,供电线路电压降很大,致使电动机所接母线的电压大大降低,影响其它用电设备的正常运行,如电灯不亮,其它电动机启动不起来,电磁铁自动释放等。
就感应电动机本身来说,都容许直接启动,即可加额定电压启动。
由于电动机的容量和其所接的电源容量大小不相配合,感应电动机有可能在启动时因线端电压降得太低、启动力矩不够而启动不起来。为了解决这个问题和减少对其它同母线用电设备的影响,有的容量较大的电动机必须采用启动设备,以限制启动电流及其影响。
需要不需要启动设备,关键在于电源容量和电动机容量大小的比较。发电厂或电网容量愈大,允许直接启动的电动机容量也越大。所以现在新建的中、大型电厂,除绕线式外的感应电动机几乎全部采用直接启动,只有老的和小的电厂中,还可见到各种启动设备启动的电动机。
对于鼠笼电动机,采用启动设备的目的不外乎是为了降低启动电压,从而达到降低启动电流的结果。而根据降压方法不同,启动方法(1)Y/△转换启动法。正常运行时定子绕组接成△形的电动机,在启动时接成Y形,待启动后又改成△形接法。(2)用自耦变压器启动法。(3)用电抗器启动法。
5. 电动机三相绕组一相首尾接反,启动时有什么现象?怎样查找?
答:电动机三相绕组一相绕组首尾接反,则在启动时:
(1) 启动困难。
(2) 一相电流大。
(3) 可能产生振动引起声音很大。
一般查找的方法是:
(1) 仔细检查三相绕组首、尾标志。
(2) 检查三相绕组的极性次序,如果不是N,S交错分布,即表示有一相绕组反接。
6. 感应电动机定子绕组一相断线为什么启动不起来?
答:三相星接的定子绕组,一相断线时,电动机就处于只有两相线端接电源的线电压上,组成串联回路,成为单相运行。
单相运行时将有以下现象:原来停来着的电动启动不起来,且“唔唔”作响,用手拨一下转子轴,也许能慢慢转动。原来转动着的电动机转速变慢,电流增大,电机发热,甚至于烧毁。
7. 鼠笼式感应电动机运行中转子断条有什么异常现象?
答:鼠笼式感应电动机在运行中转子断条,电动机转速将变慢,定子电流忽大忽小呈周期性摆动,机身振动,可能发出有节奏的“嗡嗡”声。
8. 感应电动机定子绕组运行中单相接地有哪些异常现象?
答:对于380伏低压电动机,接在中性点接地系统中,发生单相接地时,接地相的电流显著增大,电动机发生振动并发出不正常的响声,电机发热,可能一开始就使该相的熔断器熔断,也可能使绕组因过热而损坏。
9. 频率变动对感应电动机运行有什么影响?
答:频率的偏差超过额定电流的±1%时,电动机的运行情况将会恶化,影响电动机的正常运行。
电动机运行电压不变时,磁通与频率成反比,因此频率的变化将影响电动机的磁通。
电动机的启动力矩与频率的立方成反比,{zd0}力矩与频率的平方成反比,{zd0}力矩与频率的平方成反比,所以频率的变动对电动机力矩也是有影响的。
频率的变化还将影响电动机的转速、出力等。
频率升高,定子电流通常是增大的,在电压降低的情况下,频率降低,电动机吸取的无功功率要减小。
由于频率的改变,还会影响电动机的正常运行,使其发热。
10. 感应电动机在什么情况下会过电压?
答:运行中的感应电动机,在开关断闸的瞬间,容易发生电感性负荷的操作过电压,有些情况,合闸时也能产生操作过电压。电压超过三千伏的绕线式电动机,如果转子开路,则在启动时合闸瞬间,磁通突变,也会产生过电压。
11. 电压变动对感应电动机的运行有什么影响?
答:下面分别说明电压偏离额定值时,对电动机运行的影响。为了简单起见,在讨论电压变化时,假定电源的频率不变,电动机的负载力矩也不变。
(1) 对磁通的影响
电动机铁芯中磁通的大小决定于电势的大小。而在忽略定子绕组漏阻抗压降的前提下,电势就等于电动机的电压。由于电势和磁通成正比地变化,所以,电压升高,磁通成正比地增大;电压降低,磁通成正比地减小。
(2) 对力矩的影响
不论是启动力矩、运行时的力矩或{zd0}力矩,都与电压的平方成正比。电压愈低,力矩愈小。由于电压降低,启动力矩减小,会使启动时间增长,如当电压降低20%时,启动时间将增加3.75倍。要注意的是,当电压降得低到某一数值时,电动机的{zd0}力矩小于阻力力矩,于是电动机会停转。而在某些情况下(如负载是水泵,有水压情况下),电动机还会发生倒转。
(3) 对转速的影响
电压的变化对转速的影响较小。但总的趋向是电压降低,转速也降低,因为电压降低使电磁力矩减小。例如,对于具有额定转差为2%而{zd0}力矩为两倍额定力矩的电动机,当电压降低20%时,转速仅减小1.6%。
(4) 对出力的影响
出力即机轴输出功率。它与电压的关系与转速对电压的关系相似,电压变化对出力影响不大,但随电压的降低出力也降低。
(5) 对定子电流的影响
定子电流为空载电流与负载电流的向量和。其中负载电流实际上是与转子电流相对应的。负载电流的变化趋势与电压的变化相反,即电压升高,负载电流减小,电压降低,负载电流增加。而空载电流(或叫激磁电流)的变化趋势与电压的变化相同,即电压增高,空载电流也增大,这是因为空载电流随磁通的增大而增大。
当电压降低时,电磁力矩降低,转差增大,转子电流和定子中负载电流都增大,而空载电流减小。通常前者占优势,故当电压降低时,定子电流通常是增大的。
当电压升高时,电磁力矩增大,转差减小,负载电流减小,而空载电流增大。但这里分两种情况:当电压偏离额定值不大,磁通还增大得不多的时候,铁芯未饱和,空载电流的增加是与电压成比例的,此时负载电流减小占优势,定子电流是减小的;当电压偏离额定值较大,磁通增大得很多时,由于铁芯饱和,空载电流上升得很快,以致它的增大占了优势,此时定子电流增加。所以,当电压增大时,定子电流开始略有减小,而后上升,此时,功率因数变坏。
(6) 对吸取无功功率的影响
电动机吸取的无功功率,一是漏磁无功功率,二是磁化无功功率,前者建立漏磁场,后者建立定、转子之间实现电磁能量转换用的主磁场。
漏磁无功功率与电压的平方成反比地变化,而磁化功率与电压的平方成正比地变化。但由于铁芯饱的影响,磁化功率可能不与电压的平方成正比地变化。所以 ,电压降低时,从系统吸取的总的无功功率变化不大,还有可能减小。
(7) 对效率的影响
若电压降低,机械损耗实际上不变,铁耗差不多与电压平方成正比减少;转子绕组的损耗和转子电流平方成正比增加;定子绕组的损耗决定于定子电流的增加还是减少,而定子电流又决定于负载电流和空载电流间的互相关系。总的来说,电动机在负载小时(≤40%),效率增加一些,而然后开始很快地下降。
(8) 对发热的影响
在电压变化范围不大的情况下,由于电压降低,定子电流升高;电压升高,定子电流降低。在一定的范围内,铁耗和铜耗可以相互补偿,温度保持在容许范围内。因此,当电压在额定值±5%范围内变化时,电动机的容量仍可保持不变。但当电压降低超过额定值的5%时,就要限制电动机的出力,否则定子绕组可能过热,因为此时定子电流可能已升到比较高的数值。当电压升高超过10%时,由于磁通密度增加,铁耗增加,又由于定子电流增加,铜耗也增加,故定子绕组温度将超过允许值。
12. 规程规定电动机的运行电压可以偏离额定值-5%或+10%而不改变其额定出力,为什么电压偏高的允许范围较大?
答:关于电压偏离额定值对电动机运行的影响,这里只着重谈谈为什么规定偏高的范围和偏低的范围不一样。概括起来说,原因有以下两点。
(1) 电压偏高运行对电动机来说比电压偏低运行所处条件要好,造成不利的影响少。
电压偏低时,定子、转子电流都增加而使损耗增加,同时转速降低又使冷却条件变坏,这样会使电动机温升增高,此外,由于力矩减小,又使启动和自启动条件变坏。
诚然,电压增高由于磁通增多使铁耗增加,升高一点温度对定子绕组温度是有影响的。可是,由于定子电流降低又使定子绕组温度降一点,据分析,铁芯温度升高对定子绕组温度升高的影响要比定子电流减小引起的温降要小一些,因此,总的趋向是使温度降低一些的。至于铁芯本身温度升高一点,无关紧要,对电动机没有什么危害。电压升高引起力矩的增加,则极大的改善了起动和自启动的条件。至于从绝缘的角度来说,提高10%的电压,不会有什么危险,因绝缘的电气强度都有一定的余度。
(2) 采用电压偏离范围较大的规定,对运行来说,比较易于满足要求,可能因此就可避免采用有载调压的厂用变压器。不然,范围规定得小,即使设计上不采用有载调压厂用变压器,也得要求运行人员频繁地调整发电机电压或主变压器的分接头。
13. 用摇表测量绝缘电阻时要注意什么?
答:(1) 兆欧表一般有500、1000、2500伏几种,应按设备的电压等级按规定选好哪一种兆欧表。
(2) 测量设备的绝缘电阻时,必须先切断电源,对具有较大电容的设备(如电容器、变压器、电机及电缆线路),必须先进行放电。
(3) 兆欧表应放在水平位置,在未接线之前先摇动兆欧表,看指针是否在“∞”处,再将“L”和“E”两个接线柱短接,慢慢地摇动兆欧表,看指针是否指在“零”处,对于半导体型铛欧表不宜用短路校验。
(4) 兆欧表引用线用多股软线,且应有良好的绝缘。
(5) 架空线路及与架空线路相连接的电气设备,在发生雷雨时,或者不能全部停电的双回架空线路和母线,在被测回路的感应电压超过12伏时,禁止进行测量。
(6) 测量电容器、电缆、大容量变压器和电机时,要有一定的充电时间。电容量愈大,充电时间应愈长。一般以兆欧表转动一分钟后的读数为准。
(7) 在摇测绝缘电阻时,应使兆欧表保持额定转速,一般为120转/分。当被测物电容量大时,为了避免指针摆动,可适当提高转速(如130转/分)。
(8) 被测物表面应擦拭清洁,不得有污物,以免漏电影响测量的准确度。
(9) 兆欧表没有停止转动和设备未放电之前,切勿用手触及测量部分和兆欧表的接线柱,以免触电。
14. 用兆欧表测量绝缘电阻时为什么规定摇测时间为1分钟?
答:用兆欧表测量绝缘,一般规定摇测一分钟后的读数为准。因为在绝缘体上加上直流电压后,流过绝缘体的电流(吸收电流)将随时间的增长而逐渐下降。而绝缘体的直流电阻率是根据稳态传导电流确定的,并且不同材料绝缘体其绝缘吸收电流的衰减时间不同,但是试验证明,绝大多数绝缘材料吸收电流经过一分钟已趋于稳定,所以规定以加压一分钟后的绝缘电阻值来确定绝缘性能的好坏。
15. 电动机低电压保护起什么作用?
答:当电动机的供电母线电压短时降低或短时中断又恢复时,为了防止电动机启动时使电源电压严重降低,通常在次要电动机上装设低电压保护,当供电母线电压降到一定值时,低电压保护动作将次要电动机切除,使得母线电压迅速恢复,以保证重要电动机的自启动。
16. 感应电动机起动不起来可能是什么原因?
答:(1)电源方面: a.无电:操作回路断线,或电源开关未合上。 b.一相或两相断电。 c.电压过低。
(2)电动机本身: a.转子绕组开路。 b.定子绕组开路。 c.定,转子绕组有短路故障。 d.定、转子相擦。
(3)负载方面: a.负载带得太重。 b.机械部分卡涩。
17. 鼠笼式感应电动机运行时转子断条对其有什么影响?
答:鼠笼式电动机常因铸铝质量较差或铜笼焊接质量不佳发生转子断条故障。断条后,电动机的电磁力矩降低而造成转速下降,定子电流时大时小,因为断条破坏了结构的对称性,同时破坏了电磁的对称性,使与转子有相对运动的定子磁场,从转子的表面不同部位穿入磁通时,转子的反应不一样,因而造成定子电流时大时小。同时断条也会使机身发生振动,这是因为沿整个定子内膛周围的磁拉力不均匀引起的,周期性的嗡嗡声,也因此产生。
18. 运行中的电动机遇到哪些情况时应立即停止运行?
答:电动机在运行中发生下列情况之一者,应立即停止运行:
⑴ 人身事故。
⑵ 电动机冒烟起火,或一相断线运行。
⑶ 电动机内部有强烈的摩擦声。
⑷ 直流电动机整流子发生严重环火。
⑸ 电动机强烈振动及轴承温度迅速升高或超过允许值。
⑹ 电动机受水淹。
19. 运行中的电动机,声音发生突然变化,电流表所指示的电流值上升或低至零,其可能原因有哪些?
答:可能原因如下:
⑴ 定子回路中一相断线。
⑵ 系统电压下降。
⑶ 绕组匝间短路。
⑷ 鼠笼式转子绕组端环有裂纹或与铜(铝)条接触不良。
⑸ 电动机转子铁芯损坏或松动,转轴弯曲或开裂。
⑹ 电动机某些零件(如轴承端盖等)松弛或电动机底座和基础的联接不紧固。
⑺ 电动机定、转子空气间隙不均匀超过规定值。
20. 电动机启动时,合闸后发生什么情况时必须停止其运行?
答:⑴ 电动机电流表指向{zd0}超过返回时间而未返回时;
⑵ 电动机未转而发生嗡嗡响声或达不到正常转速;
⑶ 电动机所带机械严重损坏;
⑷ 电动机发生强烈振动超过允许值。
⑸ 电动机启动装置起火、冒烟;
⑹ 电动机回路发生人身事故。
⑺ 启动时,电机内部冒烟或出现火花时。
21. 电动机正常运行中的检查项目?
答:⑴ 音响正常,无焦味。
⑵ 电动机电压、电流在允许范围内,振动值小于允许值,各部温度正常。
⑶ 电缆头及接地线良好。
⑷ 绕线式电动机及直流电机电刷、整流子无过热、过短、烧损,调整电阻表面温度不超过60℃。
⑸ 油色、油位正常。
⑹ 冷却装置运行良好,出入口风温差不大于25℃,{zd0}不超过30℃。
22. 怎样改变三相电动机的旋转方向?
答:电动机转子的旋转方向是由定子建立的旋转磁场的旋转方向决定的,而旋转磁场的方向与三相电流的相序有关。这样改变了电流相序即改变旋转磁场的方向,也即改变了电动机的旋转方向。
23. 电动机轴承温度有什么规定?
答:周围温度为+35℃时,滑动轴不得超过80℃,流动轴不得超过100℃。(油脂质量差时不超过来5℃)。
24. 电动机绝缘电阻值是怎样规定的?
答:(1)6KV电动机应使用1000V--2500V摇表测绝缘电阻,其值不应低于6MΩ。
(2)380V电动机使用500V摇表测量绝缘电阻,其值不应低于0.5MΩ。
(3)容量为500KW以上的电动机吸收比R60"/R15"不得小于1.3,且与前次相同条件上比较,不低于前次测得值的1/2,低于此值应汇报有关领导。
(4)电动机停用超过7天以上时,启动前应测绝缘,备用电机每月测绝缘一次。
(5)电动机发生淋水进汽等异常情况时启动前必须测定绝缘。
25. 运行的电动机有什么规定和注意事项?
答:(1)电动机在额定冷却条件下,可按制造厂铭牌上所规定的额定数据运行,不允许限额不明确的电动机盲目地运行。
(2)电动机线圈和铁芯的{zg}监视温度应根据制造厂的规定执行,如厂家没有明确规定应按下表规定执行,电动机在任何运行情况下均不应超出此温升。
绝缘等级 A级 B级 E级 F级
测量方法 温度计 电阻 温度计 电阻 温度计 电阻
静子绕组 温升 50 60 60 75 70 80
温升 85 95 100 110 105 115
静子铁芯 温升 60 75 80
温升 95 100 115
上表数值在环境温度为35℃时规定的
(3)电动机轴承的允许温度,应遵守制造厂的规定。无制造规定时,按照下列规定:
a、对于滑动轴承,不得超过80℃。
b、对于滚动轴承,不得超过100℃(油脂质量差时,不超过85℃)
(4)电动机一般可以在额定电压变动-5%至+10%的范围内运行,其额定出力不变。
(5)电动机在额定出力运行时,相间电压的不平衡率不得大于5%,三相电流差不得大于10%。
(6)电动机运行时,在每个轴承测得的振动不得超过下表的规定:
电动机转速 振动值(双振幅)mm
3000rpm 0.05
1500rpm 0.085
1000rpm 0.10
750rpm及以下 0.12
电动机在运行过程中除严格执行各种规定外,还应注意如下问题:
(1) 电动机的电流在正常情况下不得超过允许值,三相电流之差不得大于10%。
(2) 音响和气味:电机在正常运行时音响应正常均匀,无杂音;电动机附近无焦臭味或烟味,如发现有异音,焦臭味或冒烟应采取措施进行处理。
(3) 轴承的工作情况:主要是润滑情况,润滑油是否正常、温度是否高、是否有杂物。
(4) 其它情况:如冷却水系统是否正常,绕线式电机滑环上的电刷运行是否正常等。
26. 电动机运行中发生哪些情况应立即停止运行?
答:(1) 人身事故。
(2) 电动机冒烟起火,或一相断线运行。
(3) 电动机内部有强烈的摩擦声。
(4) 直流电动机整流子发生严重环火。
(5) 电动机强烈振动及轴承温度迅速升高或超过允许值。
(6) 电动机受水淹。
27. 在什么情况下可先启动备用电动机,然后再停止故障电动机?
答:遇有下列情况,对于重要的厂用电动机可事先启动备用电动机组,然后停止故障电机:
(1) 电动机内发出不正常的声音或绝缘有烧焦的气味。
(2) 电动机内或启动调节装置内出现火花或烟气。
(3) 静子电流超过运行的数值。
(4) 出现强烈的振动。
(5) 轴承温度出现不允许的升高。
28. 什么原因会造成三相异步电动机的单相运行?单相运行时现象如何?
答:原因:三相异步电动机在运行中,如果有一相熔断器烧坏或接触不良,隔离开关,断路器,,电缆头及导线一相接触松动以及定子绕组一相断线,均会造成电动机单相运行。
现象:电动机在单相运行时,电流表指示上升或为零(如正好安装电流表的一相断线时,电流指示为零),转速下降,声音异常,振动增大,电动机温度升高,时间长了可能烧毁电动机。
29. 高压厂用电动机综合保护具有哪些功能?
答:电动机(变压器)厂用综合保护,装置采用先进的软硬件技术开发的单片机保护技术,一般采用两相三元件方式,B相由软件产生,一般具备有以下功能:(1)速断保护;(2)过流保护;(3)过负荷保护;(4)负序电流保护;(5)零序电流保护;(6)热过负载保护。
30. 高压厂用电动机一般装设有哪些保护?保护是如何配置的?
答:对于1000V及以上的厂用电动机应装设由继电器构成的相间短路保护装置,通常采用无时限的速断保护,并且一般用两相式,动作于跳闸。容量2000KW及以上的电动机或2000KW以下中性点具有分相引出线的电动机,当电流速断保护灵敏系数不够时,应装设差动保护。
过流保护:当电动机装设差动保护或速断保护时,宜装设过电流保护,作为差动保护或速断保护的后备保护。
对于运行中易发生过负荷的电动机或启动、自启动条件较差而使启动、自启动时间过长的电动机应装设过负荷保护。
低电压保护主要是为了当电源电压短时降低或中断后的恢复过程中,为了保证主要电动机的自启动,通常应将一部分不重要的电动机利用低电压保护装置将其切除。另外,对于某些负荷根据生产过程和技术安全等要求不允许自启动的电动机也利用低电压保护将其切除。
31. 低压厂用电动机一般装设有哪些保护?
答:对于1000V以下小于75KW的低压厂用电动机,广泛采用熔断器或低压断路器本身的脱扣器作为相间短路保护。
低压厂用电系统中性点为直接接地时,当相间短路保护能满足单相接地短路的灵敏系数时,可由相间短路保护兼作接地短路保护。当不能满足时,应另外装设接地保护。保护装置一般由一个接于零序电流互感器上的电流继电器构成,瞬时动作于断路器跳闸。
对易于过负荷的电动机应装设过负荷保护保护。保护装置可根据负荷的特点动作于信号或跳闸。电动机操作电器为磁力启动器或接触器的供电回路,其过负荷保护由热继电器构成。由自动开关组成的回路,当装设单独的继电保护时,可采用反时限电流继电器作为过负荷保护。但电动机型自动开关也可采用本身的热脱扣器作为过负荷保护。
操作电器为磁力启动器或接触器的供电回路,由于磁力启动器或接触器的保持线圈在低电压时能自动释放,所以不需另设低电压保护。
32. 常见电动机故障和不正常工作状态有哪些?
答:在发电厂厂用电动机中,定子绕组的相间短路是电动机最严重的故障,这种故障产生的短路电流,会引起电动机的绝缘的严重损坏,同时使供电网络电压显著降低,破坏其他用电设备的正常工作。因此,必须装设相间短路保护,无时限地切除故障电动机。
电动机的故障还有单相接地故障以及一相绕组的匝间短路。单相接地对电动机的危害程度,取决于供电网络中性点的接地方式。在3~6KV高压厂用电网中,中性点是不接地的,是否装设接地保护,应视电容电流的大小而定。对于380V直接接地系统中的厂用电动机,若发生接地故障会烧损线圈和铁芯,故装设接地保护,无时限地切除故障电动机。
电动机的不正常工作状态,主要是过电流,长时间性过电流运行会使电动机温升超过允许值,加速线圈绝缘老化,甚至将电动机烧坏。
33. 电动机常见的故障原因有哪些?
(1)电动机及其电动回路发生短路等故障,使得保护动作于熔断器熔丝熔断或动作于断路器跳闸。
(2)电动机所带机械部分严重故障,电动机负荷急剧增大而过负荷,使过电流保护动作于断路器跳闸。
(3)电动机保护误动,如纯属此错误原因时,系统无冲击现象。
(4)电动机所带的设备受联锁条件控制,联锁动作。
34. 什么原因会造成三相异步电动机的非全相运行?非全相运行时现象如何?
答:原因:三相异步电动机在运行中,如果有一相熔断器烧坏或接触不良,隔离开关,断路器,电缆头及导线一相接触松动以及定子绕组一相断线,均会造成电动机单相运行。
现象:电动机在单相运行时,电流表指示上升或为零(如正好安装电流表的一相断线时,电流指示为零),转速下降,声音异常,振动增大,电动机温度升高,时间长了可能烧毁电动机。
35. 熔断器能否作为异步电动机的过载保护?
答:熔断器不能作为异步电动机的过载保护。
为了在电动机启动时不使熔断器熔断,所以选用的熔断器的额定电流要比电动机额定电流大1.5~2.5倍,这样即使电动机过负荷50%,熔断器也不会熔断,但电动机不会到1小时就烧坏。所以熔断器只能作为电动机、导线、开关设备的短路保护,而不能起过载保护的作用。只有加装热继电器等设备才能作为电动机的过载保护。
36. 电动机允许启动次数有何要求?
答:电动机启动时,启动电流大,发热多,允许启动的次数是以发热不至于影响电动机绝缘寿命和使用年限为原则确定的。连续多次合闸起动,常使电动机过热超温,甚至烧坏电动机,必须禁止。起动次数一般要求如下:
(1)正常情况下,电动机在冷态下允许启动2次,间隔5min,允许在热态下启动一次。
(2)事故时(或紧急情况)以及启动时间不超过2~3S的电动机,可比正常情况多启动一次。
(3)机械进行平衡试验,电动机启动的间隔时间为:
200KW以下的电动机 不应小于0.5小时;
200~500KW的电动机 不应小于1小时;
500KW以上的电动机 不应小于2小时。
37. 电动机启动时,断路器跳闸如何处理?
答:(1)检查保护是否动作,整定值是否正确。
(2)对电气回路进行检查,未发现明显故障点及设备异常时,应停电测量绝缘电阻。
(3)检查机械部分是否卡住,或带负荷启动。
(4)检查事故按钮是否人为接通(长期卡住).
(5)电源电压是否过低。
通过检查查明原因后,待故障xx,再送电启动。
38. 电动机启动时,熔断器熔断如何处理?
答:(1)对电气回路进行检查,未发现明显故障点及设备异常时,应停电测量绝缘电阻。
(2)检查机械部分是否卡住,或带负荷启动。
(3)检查电源电压是否过低。
(4)检查熔断器熔断情况,判断有无故障或容丝容量是否满足要求。
39. 电动机运行中跳闸如何处理?
答:电动机运行中跳闸,往往不是设备有问题,就是电源有问题,也不排除保护及人员误动,应进行以下处理:
(1)立即启动备用设备投入运行,无备用设备的重要电机可强送一次。尽量减少电机跳闸对生产造成的损失及影响。
(2)测量电动机及其回路绝缘电阻。
(3)检查电动机保护是否动作,对于低压电动机,还应检查断路器、熔断器、热继电器是否正常。
(4)检查电动机及其回路有无烟火、短路及损坏的征兆。
(5)检查电源是否正常。
(6)检查机械部分是否正常,电动机轴承是否损坏抱住大轴。
(7)是否有人误动保护或事故按钮。
40. 电动机送电前应检查哪些项目?
答:(1)电动机及周围清洁、无妨碍运行的物件。
(2)油环油量充足,油色透明,油位及油循环正常。
(3)基础及各部螺丝牢固,接地线接触良好。
(4)冷却装置完好,运行正常。
(5)绕线式电动机应检查整流子、滑环、电刷接触良好,启动装置在启动位置,调整电阻无卡涩现象,利用频敏电阻启动的绕线电动机应检查频敏电阻及短路开关正常,且短接开关在断开位置。
(6)尽可能设法盘动转子,检查定、转子有无磨擦,机械部分应无卡涩现象。
(7)检查联锁开关位置正确、电气、热工仪表完整正确。
41. 电动机启动时,将开关合闸后,电动机不能转动而发出响声,或者不能达到正常的转速,可能是什么原因?
答:(1) 定子回路中一相断线。
(2) 转子回路中断线或接触不良。
(3) 转子回路中断线或接触不良。
(4) 电动机或所拖动的机械被卡住。
(5) 定子绕组接线错误。
42. 在启动或运行时,从电动机内出现火花或冒烟,可能是什么原因?
答: 中心不正或轴瓦摩损,使转子和定子相碰;鼠笼式转子的铜(铝)条断裂或接触不良。
43. 运行中的电动机,定子电流发生周期性的摆动,可能是什么原因?
答: (1) 鼠笼式转子铜(铝)条损坏。
(2)绕线式转子绕组损坏。
(3)绕线式电动机的滑环短路装置或变阻器有接触不良等故障。
(4)机械负荷发生不均匀的变化。
44. 电动机发生剧烈振动,可能是什么原因?
答:(1) 电动机和其所带机械之间的中心不正。
(2) 机组失去平衡。
(3) 转动部分与静止部分摩擦。
(4) 联轴器及其联接装置损坏。
(5) 所带动的机械损坏。
45. 电动机轴承温度高,可能是什么原因?
答:(1) 供油不足,滚动轴承的油脂不足或太多。
(2) 油质不清洁,油太浓,油中有水,油型号用错。
(3) 传动皮带拉得过紧,轴承盖盖的过紧,轴瓦面刮的不好,轴承的间隙过小。
(4) 电动机的轴承,轴倾斜。
(5) 中心不正或弹性联轴器的凸齿工作不均。
(6) 滚动轴承内部磨损。
(7) 轴承有电流通过,轴颈摩蚀不光,轴瓦合金溶解等。
(8) 转子不在磁场中心,引起轴向窜动,轴承敲击或轴承受挤压。
46. 炉水循环泵启动前的检查项目?
答:(1)确认电动机内的空气已排完。
(2)电动机进水应从底部缓慢进水,并保持流量在1.607m3/h~1.118m3/h。
47. 炉水循环泵启动及运行中的检查项目?
答: 运行中的检查:
(1) 电动机无论在热态或冷态运行中都应保持冲洗水流量在0.671m3/h~1.118m3/h,直到气包压力达到1.6MPa,且氯化铁含量低于-0.3ppm时为止。
(2) 冷态运行每12小时对电动机冷却水清洁度进行一次取样分析,正常运行每周一次。
启动注意事项:
(1) 备用泵每月应转一次,每次运行时间在10 15分钟。
(2) 备用泵仍需要监视电动机冷却水温度不低于40℃,注意防冻。
(3) 电动机每次起动时间间隔不小于15分钟。
48. 炉水循环泵电动机遇到什么情况时,必须将电动机停运?
答:(1) 电动机温度高于60℃。
(2) 电流突然增大或电流冲击后回零。
(3) 高压冷却器的低压冷却水中断并报警。
(4) 振动值超过12.5~15丝(5~6mil)(0.127mm~0.152mm)。
(5) 电动机在5秒钟之内启动不起来,则应迅速停止运行,查明原因。
49. 感应式电动机的振动和噪音是什么原因引起的?
答:电动机正常运行的声音由两方面引起:铁芯硅钢片通过交变磁通后因电磁力的作用发生振动,以及转子的鼓风作用。这些声音是均匀的。如果发生异常的噪音和振动,可能由以下原因引起:
(1)电磁发面的原因:
a)接线错误。如一相绕组反接、各并联电路的绕组有匝数不等的情况。
b)绕组短路。
c)多路绕组中个别支路断路。
d)转子断条。
e)铁芯硅钢片松弛。
f)电源电压不对称。
g)磁路不对称.
(2)机械方面原因:
a)基础固定不牢。
b)电动机和被拖带机械中心不正。
c)转子偏心或定子槽楔凸出使定、转子相摩擦(电动机扫膛)。
d)轴承缺油、滚动轴承钢珠损坏、轴承和轴承套摩擦、轴瓦座位移。
e)转子风扇损坏或平衡破坏。
f)所带机械不正常振动引起电动机振动。
50. 直流电动机励磁回路并接电阻有什么作用?
答:当直流电动机激磁回路断开时,由于自感作用,将在磁场绕组两端感应很高的电势,此电势可能对绕组匝间绝缘有危险。为了xx这种危险,在磁场绕组两端并接一个电阻,改电阻称为放电电阻。放电电阻可将磁场绕组构成回路,一旦出现危险电势,在回路中形成电流,使磁场能量消耗在电阻中。
51. 什么叫异步?
答:异步电动机转子的转速必须小于定子旋转磁场的转速,两个转速不能同步,故称“异步”。
52. 什么叫异步电动机的转差率?
答:异步电动机的同步转速与转子转速之差叫转差,转差与同步转速的比值的百分值叫异步电动机的转差率。
53. 异步电动机空载电流的大小与什么因素有关?
答:主要与电源电压的高低有关。因为电源电压高,铁芯中的磁通增多,磁阻将增大。当电源电压高到一定值时,铁芯中的磁阻急剧增加,绕组感抗急剧下降,这时电源电压稍有增加,将导致空载电流增加很多。
54. 什么原因会造成异步电动机空载电流过大?
答:(1)电源电压太高:这是电动机铁芯饱和使空载电流过大。
(2)装配不当或空气隙过大。
(3)定子绕组匝数不够或星形接线误接成三角形接线。
(4)硅钢片腐蚀或老化,使磁场强度减弱或片间绝缘损坏。
55. 电动机超载运行会发生什么后果?
答:电动机超载运行会破坏电磁平衡关系,使电动机转速下降,温度升高。如果短时过载还能维持运行若长时间过载,超过电动机的额定电流,会使绝缘过热加速老化,甚至烧毁电动机。
56. 异步电动机的{zd0}转矩与什么因素有关?
答:(1){zd0}转矩与电压的平方成正比。(2){zd0}转矩与漏抗成正比。
57. 什么叫电腐蚀?
答:高压电机定子线棒槽内部分绝缘的表面,包括防晕层的内、外表面,常有一种蚀伤现象,轻则变色,重则防晕层变酥,主绝缘出现麻坑,这种现象称为“电腐蚀”。
58. 直流电动机是否允许低速允许?
答:直流电动机低速运行将使温升增大,对电动机产生许多不良影响。但若采取有效措施,提高电动机的散热能力,则在不超过额定温升的前提下,可以长期运行。
59. 启动电动机时应注意什么问题?
答:(1)如果接通电源开关,电动机转子不动,应立即拉闸,查明原因并xx故障后,才允许重新启动。
(2)接通电源开关后,电动机发出异常响声,应立即拉闸,检查电动机的传动装置及熔断器。
(3)接通电源开关后,应监视电动机的启动时间和电流表的变化。如启动时间过长或电流表迟迟不返回,应立即拉闸,进行检查。
(4)启动时如果发现电动机冒火或启动后振动过大,应立即拉闸,停机检查。
(5)在正常情况下,厂用电动机允许在冷态下启动两次,每次间隔时间不得少于5分钟;在热状态下启动一次。只有在处理事故时,以及启动时间不超过2~3秒的电动机,可以多启动一次。
(6)如果启动后发现电动机反转,应立即拉闸停电,调换三相电源任意两相接线后再重新启动。
60. 直流电动机不能正常启动的原因有哪些?
答:(1)电刷不在中性线上。(2)电源电压过低。(3)激磁回路断线。(4)换向极线圈接反。(5)电刷接触不良。(6)电动机严重过载。
61. 为什么异步电动机在拉闸时会产生过电压?
答:因为在拉闸瞬间电感线圈(绕组)中的电流被截断,该电流产生的磁通急剧变化,因此产生过电压。这种过电压在绕线式电动机的定、转子绕组的端头都可能发生。
62. 造成电动机单相接地的原因是什么?
答:(1)绕组受潮。
(2)绕组长期过载或局部高温,使绝缘焦脆、脱落。
(3)铁芯硅钢片松动或有尖刺,割伤绝缘。
(4)绕组引线绝缘损坏或与机壳相碰。
(5)制造时留下隐患,如下线擦伤、槽绝缘位移、掉进金属物等。
63. 新安装或大修后的异步电动机启动前应检查哪些项目?
答:重点检查以下各相:
(1)测量电动机定子回路绝缘电阻是否合格。
(2)检查电动机接地线是否良好。
(3)检查电动机各部螺丝是否紧固。
(4)根据电动机铭牌,检查电动机电源电压是否相符,绕组接线方式是否正确。
(5)用手板动电动机转子,转动应灵活,无卡涩、摩擦现象。
(6)检查传动装置、冷却系统、联轴器及外罩、启动装置是否完好。
(7)检查控制元件的容量、保护及熔断器定值,灯光指示信号、仪表等是否符合要求。
(8)电动机本体及周围是否清洁,无影响启动和检查的杂物。