图片: 图片: 电磁力的方向取决于电磁铁道结构 说的简单一点就是普通的电磁铁的吸力是两端强,比例阀的电磁铁改过的,做的其中一端吸力很强,另外一端弱,推杆中间是个圆柱的!所以一通电就被吸到强的那一端了,所以推杆运动方向和电没关系,电会影响电磁力的大小! 描述:双向电磁铁
我对楼上朋友的想法,没有xx搞清楚,希望能进一步表达清楚。主要是感到楼上朋友的想法很特别,没有什么框框,说不准有什么新道道。
描述:BOSCH单级伺服比例阀
lxy9332先生,请注意,原BOSCH的比例阀与伺服比例阀中,凡是只带1个电磁铁的,应该是带位移传感器的那种。它们一般是常规的三位,外加一位安全位。这可见原BOSCH公司1997年出版的“电液比例技术与电液闭环比例技术的理论与应用”第29页(比例方向阀)和第83、84页(闭环比例阀,即伺服比例阀)。可以理解为通上电流后,阀处于中位,其左位与右位的沟通受命于控制电流,电磁力与弹簧力的平衡确定阀口的轴向开度,此开度由阀内位置闭环保证。失电时处于第4位-安全位。
图片:
1)普通电磁铁与比例电磁铁在个别地方有差别之外,现今两者很相像。可以参见两张附图,{dy}张图的左边是比例电磁铁道典型结构,右边是普通电磁铁与比例电磁铁吸力特性(位移-力特性,注意:对照左右图,就能明白气隙与位移的关系,即动铁只能在气隙范围内移动)。左图表明,普通电磁铁的特性是随着气隙的减小,电磁铁的吸力逐步增大。而比例电磁铁在工作区内吸力与气隙大小无关(只与输入电信号成正比)。右图中靠右边的区域3(罗马字),是一个用于退让的非工作区(例如带2个比例电磁铁的比例方向阀,当一端的电磁铁给电信号阀芯向另一端移动时,另一端的电磁铁动铁必须往后退出相等的距离,否则就打架了)。第二张图左边说明,比例电磁铁有一个涂成黑色的隔磁环,使得电磁铁气隙中的磁力线,除了像传统电磁铁那样勇往直前(产生右边图所表示的FM1电磁力,特性与传统相同)外,还有一部分磁力线弯向隔磁环左边,形成右边图上表示的FM2电磁力(吸力特性正好与传统相反,即气隙越小吸力越小),两者的叠加形成了比例电磁铁的水平吸力特性。
2)普通电磁铁有干式与湿式(电磁铁内腔充满油液)之分,现在多用湿式。比例电磁铁一般多数为湿式。湿式电磁铁道气隙中也充满油液,但总不是导磁体而磁阻比较大,所以,还是叫气隙。 3)在湿式比例电磁铁中,根据所能承受的油压倒高低,区分为基本只能承受几bar回油背压的低压,和能承受350bar的高压,使用时千万注意区分。 4)普通电磁铁电源区分交流与直流,还曾经有过阀体上(xx板下面)带有建交流整流为直流的形式,现在多常用直流,安全性好。交流电磁铁通电时如果不能xx吸合(气隙等于零),就很容易烧坏。 5)比例电磁铁多用直流,不过电压上区分常规的24V与车辆用的12V。
描述:电液比例控制系统技术构成
这里传上2张插图,可控大家了解闭环控制的一点基本情况。其中图1-5表示了电液控制系统的技术构成。我们可以看到很多反馈通路,有不同范围的局部反馈,也有控制对象到输入信号的大闭环反馈。
单向比例电磁铁的工作原理:
图可见楼上7楼的图,当给比例电磁铁控制线圈一定电流时,在线圈电流控制磁势作用下,形成两条磁路,一条磁路¢1由前端盖盆形极靴底部,沿轴向工作气隙,进入衔铁,穿过导套后段,沿导磁外壳回到前端盖极靴.而另一磁路¢2沿盆形极靴锥形周边(导套前段),沿径向穿过工作气隙进入衔铁,再与¢1汇合.由于电磁作用,磁通¢1产生了通常的端面力FM1,磁通¢2则产生了一定数量的附加轴向力FM2,两个力合成,就得到了整个比例电磁铁的输出力FM.在工作区域内,电磁输出力FM保持恒定,与位移无关.从5-1图中可见,在工作气隙接近零的区段,输出力急剧上升(吸合区Ⅰ),在这一行程区段内不能正常工作,因此在结构上用加限位片的方法将其排除. |