7、VARIANT 型转化成 CString 型 事实上,我从来没有这么做过,因为我没有用 COM/OLE/ActiveX 编写过程序。但是我在microsoft.public.vc.mfc 新闻组上看到了 Robert Quirk 的一篇帖子谈到了这种转化,我觉得把他的文章包含在我的文章里是不太好的做法,所以在这里多做一些解释和演示。如果和他的文章有相孛的地方可能是我的疏 忽。 VARIANT 类型经常用来给 COM 对象传递参数,或者接收从 COM 对象返回的值。你也能自己编写返回 VARIANT 类型的方法,函数返回什么类型 依赖可能(并且常常)方法的输入参数(比如,在自动化操作中,依赖与你调用哪个方法。IDispatch::Invoke 可能返回(通过其一个参数)一个 包含有BYTE、WORD、float、double、date、BSTR 等等 VARIANT 类型的结果,(详见 MSDN 上的 VARIANT 结构的定义)。在下面的例子中,假设 类型是一个BSTR的变体,也就是说在串中的值是通过 bsrtVal 来引用,其优点是在 ANSI 应用中,有一个构造函数会把 LPCWCHAR 引用的值转换为一个 CString(见 BSTR-to-CString 部分)。在 Unicode 模式中,将成为标准的 CString 构造函数,参见对缺省::WideCharToMultiByte 转换的告诫,以及你觉得是否可以接受(大多数情况下,你会满意的)。 你还可以根据 vt 域的不同来建立更通用的转换例程。为此你可能会考虑:
如果你想创建一个容易进行语言版本移植的应用程序,你就不能在你的源代码中直接包含本土语言字符串 (下面这些例子我用的语言都是英语,因为我的本土语是英语),比如下面这种写法就很糟: 你应该把你所有特定语言的字符串单独摆放(调试信息、在发布版本中不出现的信息除外)。这意味着向下面这样写比较好: 在你的程序中,文字字符串不是语言敏感的。不管怎样,你必须很小心,不要使用下面这样的串: 这 是我的切身体会。在我的{dy}个国际化的应用程序中我犯了这个错误,尽管我懂德语,知道在德语的语法中动词放在句子的{zh1}面,我们的德国方面的发行人还是苦 苦的抱怨他们不得不提取那些不可思议的德语错误提示信息然后重新格式化以让它们能正常工作。比较好的办法(也是我现在使用的办法)是使用两个字符串,一个 用 于读,一个用于写,在使用时加载合适的版本,使得它们对字符串参数是非敏感的。也就是说加载整个格式,而不是加载串 “reading”,“writing”: 一定要注意,如果你有好几个地方需要替换,你一定要保证替换后句子的结构不会出现问题,比如在英语中,可以是主语-宾语,主语-谓语,动词-宾语的结构等等。 在这里,我们并不讨论 FormatMessage,其实它比 sprintf/Format 还要有优势,但是不太容易和CString 结合使用。解决这种问题的办法就是我们按照参数出现在参数表中的位置给参数取名字,这样在你输出的时候就不会把他们的位置排错了。 接下来我们讨论我们这些独立的字符串放在什么地方。我们可以把字符串的值放入资源文件中的一个称为 STRINGTABLE 的段中。过程如下:首先使用 Visual Studio 的资源编辑器创建一个字符串,然后给每一个字符串取一个ID,一般我们给它取名字都以 IDS_开头。所以如果你有一个信息,你可以创建一个字符串资源然后取名为 IDS_READING_FILE,另外一个就取名为 IDS_WRITING_FILE。它们以下面的形式出现在你的 .rc 文件中: 注意:这些资源都以 Unicode 的格式保存,不管你是在什么环境下编译。他们在Win9x系统上也是以Unicode 的形式存在,虽然 Win9x 不能真正处理 Unicode。 然后你可以这样使用这些资源: // 在使用资源串表之前,程序是这样写的:
我倾向于使用 MAKEINTRESOURCE 宏显式地做这种转换。我认为这样可以让代码更加易于阅读。这是个只适合在 MFC 中使用的标准宏。你要记住,大多数的方法即可以接受一个 UINT 型的参数,也可以接受一个 LPCTSTR 型的参数,这是依赖 C++ 的重载功能做到的。C++重载函数带来的 弊端就是造成所有的强制类型转化都需要显示声明。同样,你也可以给很多种结构只传递一个资源名。 告诉你吧:我不仅只是在这里鼓吹,事实上我也是这么做的。在我的代码中,你几乎不可能找到一个字符串,当然,那些只是偶然在调试中出现的或者和语言无关的字符串除外。 9、CString 和临时对象 这是出现在 microsoft.public.vc.mfc 新闻组中的一个小问题,我简单的提一下,这个问题是有个程序员需要往注册表中写入一个字符串,他写道: 我试着用 RegSetValueEx() 设置一个注册表键的值,但是它的结果总是令我困惑。当我用char[]声明一个变量时它能正常工作,但是当我用 CString 的时候,总是得到一些垃 圾:"ÝÝÝÝ...ÝÝÝÝÝÝ" 为了确认是不是我的 CString 数据出了问题,我试着用 GetBuffer,然后强制转化成 char*,LPCSTR。GetBuffer 返回的值是正确的,但是当我把它赋值给 char* 时,它就变成垃圾了。以下是我的程序段:
真让人困惑,请帮帮我。 亲爱的 Frustrated, 你犯了一个相当微妙的错误,聪明反被聪明误,正确的代码应该象下面这样:
在一些环境中,编译器有必要创建一个临时对象,这样引入临时对象是依赖于实现的。如果编译器引入的这个临时对象所属的类有构造函数的话,编译器要确保这个类的构造函数被调用。同样的,如果这个类声明有析构函数的话,也要保证这个临时对象的析构函数被调用。 编译器必须保证这个临时对象被销毁了。被销毁的确切地点依赖于实现.....这个析构函数必须在退出创建该临时对象的范围之前被调用。 大部分的编译器是这样设计的:在临时对象被创建的代码的下一个执行步骤处隐含调用这个临时对象的析构函数,实现起来,一般都是在下一个分号处。因此, 这个 CString 对象在 GetBuffer 调用之后就被析构了(顺便提一句,你没有理由给 GetBuffer 函数传递一个参数,而且没有使用ReleaseBuffer 也是不对的)。所以 GetBuffer 本来返回的是指向这个临时对象中字符串的地址的指针,但是当这个临时对象被析构后,这块内存就被释放了。然后 MFC 的调试内存分配器会重新为这块内存全部填上 0xDD,显示出来刚好就是“Ý”符号。在这个时候你向注册表中写数据,字符串的内容当然全被破坏了。 我们不应该立即把这个临时对象转化成 char* 类型,应该先把它保存到一个 CString 对象中,这意味着把临时对象复制了一份,所以当临时的 CString 对象被析构了之后,这个 CString 对象中的值依然保存着。这个时候再向注册表中写数据就没有问题了。 此外,我的代码是具有 Unicode 意识的。那个操作注册表的函数需要一个字节大小,使用lstrlen(Name+1) 得到的实际结果对于 Unicode 字符来说比 ANSI 字符要小一半,而且它也不能从这个字符串的第二个字符起开始计算,也许你的本意是 lstrlen(Name) + 1(OK,我承认,我也犯了同样的错误!)。不论如何,在 Unicode 模式下,所有的字符都是2个字节大小,我们需要处理这个问题。微软的文档令人惊讶地对此保持缄默:REG_SZ 的值究竟是以字节计算还是以字符计算呢?我们假设它指的是以字节为单位计算,你需要对你的代码做一些修改来计算这个字符串所含有的字节大小。 10、CString 的效率 CString 的一个问题是它确实掩藏了一些低效率的东西。从另外一个方面讲,它也确实可以被实现得更加高效,你可能会说下面的代码: 比起下面的代码来,效率要低多了: 总 之,你可能会想,首先,它为 SomeCString1 分配一块内存,然后把 SomeCString1 复制到里面,然后发现它要做一个连接,则重新分配一块新的足够大的内存,大到能够放下当前的字符串加上SomeCString2,把内容复制到这块内存 ,然后把 SomeCString2 连接到后面,然后释放{dy}块内存,并把指针重新指向新内存。然后为每个字符串重复这个过程。把这 4 个字符串连接起来效率多低啊。事实上,在很多情况下根本就不需要复制源字符串(在 += 操作符左边的字符串)。 在 VC++6.0 中,Release 模式下,所有的 CString 中的缓存都是按预定义量子分配的。所谓量子,即确定为 64、128、256 或者 512 字节。这意味着除非字符串非常长,连接字符串的操作实际上就是 strcat 经过优化后的版本(因为它知道本地的字符串应该在什么地方结束,所以不需要寻找字符串的结尾;只需要把内存中的数据拷贝到指定的地方即可)加上重新计算字 符串的长度。所以它的执行效率和纯 C 的代码是一样的,但是它更容易写、更容易维护和更容易理解。 如果你还是不能确定究竟发生了怎样的过程,请看看 CString 的源代码,strcore.cpp,在你 vc98的安装目录的 mfc\src 子目录中。看看 ConcatInPlace 方法,它被在所有的 += 操作符中调用。 啊哈!难道 CString 真的这么"高效"吗?比如,如果我创建 然后我并不是得到了一个高效的、精简的5个字节大小的缓冲区(4个字符加一个结束字符),系统将给我分配64个字节,而其中59个字节都被浪费了。 如果你也是这么想的话,那么就请准备好接受再教育吧。可能在某个地方某个人给你讲过尽量使用少的空间是件好事情。不错,这种说法的确正确,但是他忽略了事实中一个很重要的方面。 如果你编写的是运行在16K EPROMs下的嵌入式程序的话,你有理由尽量少使用空间,在这种环境下,它能使你的程序更健壮。但是在 500MHz, 256MB的机器上写 Windows 程序,如果你还是这么做,它只会比你认为的“低效”的代码运行得更糟。 举例来说。字符串的大小被认为是影响效率的首要因素,使字符串尽可能小可以提高效率,反之则降低效率,这是大家一贯的想法。但是这种想法是不对的,精 确的内存分配的后果要在程序运行了好几个小时后才能体现得出来,那时,程序的堆中将充满小片的内存,它们太小以至于不能用来做任何事,但是他们增加了你程 序的内存用量,增加了内存页面交换的次数,当页面交换的次数增加到系统能够忍受的上限,系统则会为你的程序分配更多的页面,直到你的程序占用了所有的可用 内存。由此可见,虽然内存碎片是决定效率的次要因素,但正是这些因素实际控制了系统的行为,最终,它损害了系统的可靠性,这是令人无法接受的。 记住,在 debug 模式下,内存往往是xx分配的,这是为了更好的排错。 假设你的应用程序通常需要连续工作好几个月。比如,我常打开 VC++,Word,PowerPoint,Frontpage,Outlook Express,Forté Agent,Internet Explorer和其它的一些程序,而且通常不关闭它们。我曾经夜以继日地连续用 PowerPoint 工作了好几天(反之,如果你不幸不得不使用像 Adobe FrameMaker 这样的程序的话,你将会体会到可靠性的重要;这个程序机会每天都要崩溃4~6次,每次都是因为用完了所有的空间并填满我所有的交换页面)。所以xx内存分 配是不可取的,它会危及到系统的可靠性,并引起应用程序崩溃。 按量子的倍数为字符串分配内存,内存分配器就可以回收用过的内存块,通常这些回收的内存块马上就可以被其它的 CString 对象重新用到,这样就可以保证碎片最少。分配器的功能加强了,应用程序用到的内存就能尽可能保持最小,这样的程序就可以运行几个星期或几个月而不出现问 题。 题外话:很多年以前,我们在 CMU 写一个交互式系统的时候,一些对内存分配器的研究显示出它往往产生很多内存碎片。Jim Mitchell,现在他在 Sun Microsystems 工作,那时侯他创造了一种内存分配器,它保留了一个内存分配状况的运行时统计表,这种技术和当时的主流分配器所用的技术都不同,且较为{lx1}。当一个内存块 需要被分割得比某一个值小的话,他并不分割它,因此可以避免产生太多小到什么事都干不了的内存碎片。事实上他在内存分配器中使用了一个浮动指针,他认为: 与其让指令做长时间的存取内存操作,还不如简单的忽略那些太小的内存块而只做一些浮动指针的操作。(His observation was that the long-term saving in instructions by not having to ignore unusable small storage chunks far and away exceeded the additional cost of doing a few floating point operations on an allocation operation.)他是对的。 永远不要认为所谓的“{zy}化”是建立在每一行代码都高速且节省内存的基础上的,事实上,高速且节省内存应该是在一个应用程序的整体水平上考虑的。在软件的整体水平上,只使用最小内存的字符串分配策略可能是最糟糕的一种方法。 如果你认为优化是你在每一行代码上做的那些努力的话,你应该想一想:在每一行代码中做的优化很少能真正起作用。你可以看我的另一篇关于优化问题的文章《Your Worst Enemy for some thought-provoking ideas》。 记住,+= 运算符只是一种特例,如果你写成下面这样: 则每一个 + 的应用会造成一个新的字符串被创建和一次复制操作。 总结 以上是使用 CString 的一些技巧。我每天写程序的时候都会用到这些。CString 并不是一种很难使用的类,但是 MFC 没有很明显的指出这些特征,需要你自己去探索、去发现。 |