英文:alloy 根据结构的不同,合金主要类型是: (1)混合物合金(共熔混合物),当液态合金凝固时,构成合金的各组分分别结晶而成的合金,如焊锡、铋镉合金等; (2)固熔体合金,当液态合金凝固时形成固溶体的合金,如金银合金等; (3)金属互化物合金,各组分相互形成化合物的合金,如铜、锌组成的黄铜(β-黄铜、γ-黄铜和ε-黄铜)等。 合金的许多性能优于纯金属,故在应用材料中大多使用合金(参看铁合金、不锈钢)。 各类型合金都有以下通性: (1)多数合金熔点低于其组分中任一种组成金属的熔点; (2)硬度比其组分中任一金属的硬度大; (3)合金的导电性和导热性低于任一组分金属。利用合金的这一特性,可以制造高电阻和高热阻材料。还可制造有特殊性能的材料,如在铁中掺入15%铬和9%镍得到一种耐腐蚀的不锈钢,适用于化学工业。 (4)有的抗腐蚀能力强(如不锈钢) 按含碳量不同,铁碳合金分为钢与生铁两大类,钢是含碳量为0.03%~2%的铁碳合金。碳钢是最常用的普通钢,冶炼方便、加工容易、价格低廉,而且在多数情况下能满足使用要求,所以应用十分普遍。按含碳量不同,碳钢又分为低碳钢、中碳钢和高碳钢。随含碳量升高,碳钢的硬度增加、韧性下降。合金钢又叫特种钢,在碳钢的基础上加入一种或多种合金元素,使钢的组织结构和性能发生变化,从而具有一些特殊性能,如高硬度、高耐磨性、高韧性、耐腐蚀性,等等。经常加入钢中的合金元素有Si、W、Mn、Cr、Ni、Mo、V、Ti等。我国合金钢的资源相当丰富,除Cr、Co不足,Mn品位较低外,W、Mo、V、Ti和稀土金属储量都很高。21世纪初,合金钢在钢的总产量中的比例将有大幅度增长。 含碳量2%~4.3%的铁碳合金称生铁。生铁硬而脆,但耐压耐磨。根据生铁中碳存在的形态不同又可分为白口铁、灰口铁和球墨铸铁。白口铁中碳以Fe3C形态分布,断口呈银白色,质硬而脆,不能进行机械加工,是炼钢的原料,故又称炼钢生铁。碳以片状石墨形态分布的称灰口铁,断口呈银灰色,易切削,易铸,耐磨。若碳以球状石墨分布则称球墨铸铁,其机械性能、加工性能接近于钢。在铸铁中加入特种合金元素可得特种铸铁,如加入Cr,耐磨性可大幅度提高,在特种条件下有十分重要的应用。 铝合金的突出特点是密度小、强度高。铝中加入Mn、Mg形成的Al-Mn、Al-Mg合金具有很好的耐蚀性,良好的塑性和较高的强度,称为防锈铝合金,用于制造油箱、容器、管道、铆钉等。硬铝合金的强度较防锈铝合金高,但防蚀性能有所下降,这类合金有Al-Cu-Mg系和Al-Cu-Mg-Zn系。新近开发的高强度硬铝,强度进一步提高,而密度比普通硬铝减小15%,且能挤压成型,可用作摩托车骨架和轮圈等构件。Al-Li合金可制作飞机零件和承受载重的高级运动器材。 目前高强度铝合金广泛应用于制造飞机、舰艇和载重汽车等,可增加它们的载重量以及提高运行速度,并具有抗海水侵蚀,避磁性等特点。 1系: 特点:含铝99.00%以上,导电性有好,耐腐蚀性能好,焊接性能好,强度低,不可热处理强化. 应用范围:高纯铝(含铝量99.9%以上)主要用于科学试验,化学工业及特殊用途。 2系: 特点::以铜为主要合元素的含铝合金.也会添加锰、镁、铅和铋为了切削性。 如:2011合金,在熔练过程中要注意安全防护(会产生有害气体)。2014合金用天航空工业,强度高。2017合金比2014合金强度低一点,但比较容易加工。2014可热处理强化。 缺点:晶间腐蚀倾向严重。 应用范围:航空工业(2014合金),螺丝(2011合金)和使用温度较高的行业(2017合金)。 3系: 特点:以锰为主要合金元素的铝合金,不可热处理强化,耐腐蚀性能好,焊接性能好。塑性好。(接近超铝合金)。 缺点:强度低,但可以通过冷加工硬化来加强强度。退火时容易产生粗大晶粒。 应用范围:飞机上使用的导油无缝管(3003合金),易拉罐(3004合金)。 4系: 以硅为主,不常用。部分4系可热处理强化,但也有部分4系合金不可热处理化。 5系: 特点:以镁为主。耐耐性能好,焊接性能好,疲劳强度好,不可热处理强化,只能冷加工提高强度。 应用范围:割草机的手柄、飞机油箱导管、xxx。 一般中端及其以上的鞋架基本是6系或者7系 6系: 特点:以镁和硅为主。Mg2Si为主要强化相,目前应用最广泛的合金。 6063、6061用的最多、其它6082、6160、6125、6262、6060、6005、6463。 6063、6060、6463在6系中强度比较低。 6262、6005、6082、6061在6系中强度比较高。旋风二号中端的架子就是6061 特性:中等强度,耐腐蚀性能好,焊接性能好,工艺性能好(易挤压出成形)氧化着色性能好。 应用范围:交能工具(如:汽车行李架、门、窗、车身、散热片、间箱外壳) 7系: 特点:以锌为主,但有时也要少量添加了镁、铜。其中超硬铝合金就是含有锌、铅、镁和铜合金接近钢材的硬度。挤压速度较6系合金慢,焊接性能好。7005和7075是7系中{zg}的档次,可热处理强化。 应用范围:航空方面(飞机的承力构件、起落架)、火箭、螺旋桨、航空飞船。 工业中广泛使用的铜合金有黄铜、青铜和白铜等。 Cu与Zn的合金称黄铜,其中Cu占60%~90%、Zn占40%~10%,有优良的导热性和耐腐蚀性,可用作各种仪器零件。再如在黄铜中加入少量Sn,称为海军黄铜,具有很好的抗海水腐蚀的能力。在黄铜中加入少量的有润滑作用的Pb,可用作滑动轴承材料。 青铜是人类使用历史最久的金属材料,它是Cu、Sn合金。锡的加入明显地提高了铜的强度,并使其塑性得到改善,抗腐蚀性增强,因此锡青铜常用于制造齿轮等耐磨零部件和耐蚀配件。Sn较贵,目前已大量用Al、Si、Mn来代替Sn而得到一系列青铜合金。铝青铜的耐蚀性比锡青铜还好。铍青铜是强度{zg}的铜合金,它无磁性又有优异的抗腐蚀性能,是可与钢相竞争的弹簧材料。 白铜是Cu-Ni合金,有优异的耐蚀性和高的电阻,故可用作苛刻腐蚀条件下工作的零部件和电阻器的材料。 锌合金的主要添加元素有铝,铜和镁等.锌合金按加工工艺可分为形变与铸造锌合金两类.铸造锌合金流动性和耐腐蚀性较好,适用于压铸仪表,汽车零件外壳等。 【锌合金成分及铸件品质】 一、锌合金的特点 1. 比重大。 2. 铸造性能好,可以压铸形状复杂、薄壁的精密件,铸件表面光滑。 3. 可进行表面处理:电镀、喷涂、喷漆。 4. 熔化与压铸时不吸铁,不腐蚀压型,不粘模。 5. 有很好的常温机械性能和耐磨性。 6. 熔点低,在385℃熔化,容易压铸成型。 ①铅基或锡基轴承合金。与铅基轴承合金统称为巴氏合金。含锑3%~15%,铜3%~10%,有的合金品种还含有10%的铅。锑、铜用以提高合金的强度和硬度。其摩擦系数小,有良好的韧性、导热性和耐蚀性,主要用以制造滑动轴承。 ②铅锡焊料。以锡铅合金为主,有的锡焊料还含少量的锑。含铅38.1%的锡合金俗称焊锡,熔点约183℃,用于电器仪表工业中元件的焊接,以及汽车散热器、热交换器、食品和饮料容器的密封等。 ③铅锡合金涂层。利用锡合金的抗蚀性能,将其涂敷于各种电气元件表面,既具有保护性,又具有装饰性。常用的有锡铅系、锡镍系涂层等。 ④铅锡合金(包括铅锡合金,无铅锡合金)可以用来生产制作各种精美合金饰品、合金工艺品,如戒指、项链、手镯、耳环、胸针、纽扣、领带夹、帽饰、工艺摆饰、合金相框、宗教徽志、微型塑像、纪念品等。 铅锡合金(用作合金饰品、合金工艺品材料)的特点 1.铅锡合金性能稳定,熔点低,流动性好,收缩性小。 2.铅锡合金晶粒幼细,韧性良好,软硬适宜,表面光滑,无砂洞,无疵点,无裂纹,磨光及电镀效果好。 3.铅锡合金离心铸造性能好,韧性强,可以铸造形状复杂、薄壁的精密件,铸件表面光滑。 4.铅锡合金产品可进行表面处理:电镀、喷涂、喷漆。 5.铅锡合金晶体结构致密,在原料方面确保铸件尺寸公差小,表面精美,后处理瑕疵少.
金属材料在腐蚀性介质中所具有的抵抗介质侵蚀的能力,称金属的耐蚀性。纯金属中耐蚀性高的通常具备下述三个条件之一: ①热力学稳定性高的金属。通常可用其标准电极电势来判断,其数值较正者稳定性较高;较负者则稳定性较低。耐蚀性好的贵金属,如Pt、Au、Ag、Cu等就属于这一类。 ②易于钝化的金属。不少金属可在氧化性介质中形成具有保护作用的致密氧化膜,这种现象称为钝化。金属中最容易钝化的是Ti、Zr、Ta、Nb、Cr和Al等。 ③表面能生成难溶的和保护性能良好的腐蚀产物膜的金属。这种情况只有在金属处于特定的腐蚀介质中才出现,例如,Pb和Al在H2SO4溶液中,Fe在H3PO4溶液中,Mo在盐酸中以及Zn在大气中等。 因此,工业上根据上述原理,采用合金化方法获得一系列耐蚀合金,一般有相应的三种方法: ①提高金属或合金的热力学稳定性,即向原不耐蚀的金属或合金中加入热力学稳定性高的合金元素,使形成固溶体以及提高合金的电极电势,增强其耐蚀性。例如在Cu中加Au,在Ni中加入Cu、Cr等,即属此类。不过这种大量加入贵金属的办法,在工业结构材料中的应用是有限的。 ②加入易钝化合金元素,如Cr、Ni、Mo等,可提高基体金属的耐蚀性。在钢中加入适量的Cr,即可制得铬系不锈钢。实验证明,在不锈钢中,含Cr量一般应大于13%时才能起抗蚀作用,Cr含量越高,其耐蚀性越好。这类不锈钢在氧化介质中有很好的抗蚀性,但在非氧化性介质如稀硫酸和盐酸中,耐蚀性较差。这是因为非氧化性酸不易使合金生成氧化膜,同时对氧化膜还有溶解作用。 ③加入能促使合金表面生成致密的腐蚀产物保护膜的合金元素,是制取耐蚀合金的又一途径。例如,钢能耐大气腐蚀是由于其表面形成结构致密的化合物羟基氧化铁[FeOx·(OH)23-2x],它能起保护作用。钢中加入Cu与P或P与Cr均可促进这种保护膜的生成,由此可用Cu、P或P、Cr制成耐大气腐蚀的低合金钢。 金属腐蚀是工业上危害{zd0}的自发过程,因此耐蚀合金的开发与应用,有重大的社会意义和经济价值。 耐热合金合金又称高温合金,它对于在高温条件下的工业部门和应用技术领域有着重大的意义。 一般说,金属材料的熔点越高,其可使用的温度限度越高。这是因为随着温度的升高,金属材料的机械性能显著下降,氧化腐蚀的趋势相应增大,因此,一般的金属材料都只能在500 ℃~600 ℃下长期工作。能在高于700 ℃的高温下工作的金属通称耐热合金。“耐热”是指其在高温下能保持足够强度和良好的抗氧化性。 提高钢铁抗氧化性的途径有两条:一是在钢中加入Cr、Si、Al等合金元素,或者在钢的表面进行Cr、Si、Al合金化处理。它们在氧化性气氛中可很快生成一层致密的氧化膜,并牢固地附在钢的表面,从而有效地阻止氧化的继续进行。二是用各种方法在钢铁表面形成高熔点的氧化物、碳化物、氮化物等耐高温涂层。 提高钢铁高温强度的方法很多,从结构、性质的化学观点看,大致有两种主要方法: 一是增加钢中原子间在高温下的结合力。研究指出,金属中结合力,即金属键强度大小,主要与原子中未成对的电子数有关。从周期表中看,ⅥB元素金属键在同一周期内最强。因此,在钢中加入Cr、Mo、W等原子的效果{zj0}。 二是加入能形成各种碳化物或金属间化合物的元素,以使钢基体强化。由若干过渡金属与碳原子生成的碳化物属于间隙化合物,它们在金属键的基础上,又增加了共价键的成分,因此硬度极大,熔点很高。例如,加入W、Mo、V、Nb可生成WC、W2C、MoC、Mo2C、VC、NbC等碳化物,从而增加了钢铁的高温强度。 利用合金方法,除铁基耐热合金外,还可制得镍基、钼基、铌基和钨基耐热合金,它们在高温下具有良好的机械性能和化学稳定性。其中镍基合金是{zy}的超耐热金属材料,组织中基体是Ni Cr Co的固溶体和Ni3Al金属化合物,经处理后,其使用温度可达1 000 ℃~1 100 ℃。
钛是周期表中第IVB类元素,外观似钢,熔点达1 672 ℃,属难熔金属。钛在地壳中含量较丰富,远高于Cu、Zn、Sn、Pb等常见金属。我国钛的资源极为丰富,仅四川攀枝花地区发现的特大型钒钛磁铁矿中,伴生钛金属储量约达4.2亿吨,接近国外探明钛储量的总和。 纯钛机械性能强,可塑性好,易于加工,如有杂质,特别是O、N、C 提高钛的强度和硬度,但会降低其塑性,增加脆性。 钛是容易钝化的金属,且在含氧环境中,其钝化膜在受到破坏后还能自行愈合。因此 干腐蚀介质都是稳定的。钛和钛合金有优异的耐蚀性,只能被氢氟酸 浓度的 侵蚀。特别是 稳定,将钛或钛合金放 取出后,仍光亮如初,远优于不锈钢。 钛的另一重要特性是密度小。其强度是不锈钢的3.5倍,铝合金的1.3倍,是目前所有工业金属材料中{zg}的。 液态的钛几乎能溶解所有的金属,形成固溶体或金属化合物等各种合金。合金元素如Al、V、Zr、Sn、Si、Mo和Mn等的加入,可改善钛的性能,以适应不同部门的需要。例如,Ti-Al-Sn合金有很高的热稳定性,可在相当高的温度下长时间工作;以Ti-Al-V合金为代表的超塑性合金,可以50%~150%地伸长加工成型,其{zd0}伸长可达到2 000%。而一般合金的塑性加工的伸长率{zd0}不超过30%。 由于上述优异性能,钛享有“未来的金属”的美称。钛合金已广泛用于国民经济各部门,它是火箭、导弹和航天飞机不可缺少的材料。船舶、化工、电子器件和通讯设备以及若干轻工业部门中要大量应用钛合金,只是目前钛的价格较昂贵,限制了它的广泛使用。
材料在外加磁场中,可表现出三种情况:①不被磁场所吸引的,叫反磁性材料;②微弱地被磁场所吸引的,叫顺磁性材料;③强烈地被磁场吸引的,称铁磁性材料,其磁性随外磁场的加强而急剧增高,并在外磁场移走后,仍能保留磁性。金属材料中,大多数过渡金属具有顺磁性;只有Fe、Co、Ni等少数金属是铁磁性的。 金属中组成永磁材料的主要元素是Fe、Co、Ni和某些稀土元素。目前使用的永磁合金有稀土 钴系、铁 铬 钴系和锰 铝 碳系合金。 磁性合金在电力、电子、计算机、自动控制和电光学等新兴技术领域中,有着日益广泛的应用。
[英] Sodium Potaddium Al [别]钠钾合金 [缩]JNHJ 【化学结构】 4K-Na 【化学特性】 银色的软质固体或液体. 遇酸、二氧化碳、潮气及水发生剧烈反应, 放出氢气, 立即自燃, 有时甚至会爆炸. 密度: 0.847克/毫升(100℃) (K78%,Na22%); 0.886克/毫升(100℃)(K56%,Na44%) 熔点: -11℃(K78%,Na22%); 19℃(K56%, Na44%); 【极限参数】 沸点: 784℃(K78%,Na22%); 825℃(K56%, Na44%); 【应用】液态金属核反应堆用的冷却剂是钠钾合金,常温下液态。 钠钾合金的熔点 钠 钾 熔点 20% 80% -10 ℃ 22% 78% -11 ℃ 24% 76% -3.5 ℃ 40% 60% 5 ℃ 铝锂合金具有高比强度(断裂强度/密度)、高比刚度且相对密度小的特点,如用作现代飞机蒙皮材料,一架大型客机可减轻重量50 kg。以波音747为例,每减轻1 kg,一年可获利2 000美元。钛合金比钢轻、耐腐蚀、无磁性、强度高,是用于航空和舰艇的理想材料。 由于石油和煤炭的储量有限,而且在使用过程中会带来环境污染等问题,尤其是20世纪70年代全球石油危机,使氢能作为新的清洁燃料成为研究热点。在氢能利用过程中,氢的储运是重要环节。1969年荷兰飞利浦公司研制出LaNi5储氢合金,具有大量的可逆地吸收、释放氢气的性质,其合金氢化物LaNi5H6中氢的密度与液态氢相当,约为氢气密度的1 000倍。 储氢合金是由两种特定金属构成的合金,其中一种可以大量吸氢,形成稳定的氢化物,而另一种金属虽然与氢的亲和力小,但氢很容易在其中移动。Mg、Ca、Ti、Zr、Y和La等属于{dy}种金属,Fe、Co、Ni、Cr、Cu和Zn等属于第二种金属。前者控制储氢量,后者控制释放氢的可逆性。通过两者合理配制,调节合金的吸放氢性能,制得在室温下能够可逆吸放氢的较理想的储氢材料。 镍钴合金能耐1 200 ℃的高温,可用于喷气飞机和燃气轮机的构件。镍钴铁非磁性耐热合金在1 200 ℃时仍具有高强度、韧性好的特点,可用于航天飞机的部件和原子反应堆的控制棒等。寻找符合耐高温、可长时间运行(10 000 h以上)、耐腐蚀、高强度等要求的合金材料,仍是今后研究的方向。 它们具有高弹性、金属橡胶性能、高强度等特点,在较低温度下受力发生塑性变形后,经过加热,又恢复到受热前的形状。如Ni-Ti、Ag-Cd、Cu-Cd、Cu-Al-Ni、Cu-Al-Zn等合金,可用于调节装置的弹性元件(如离合器、节流阀、控温元素等)、热引擎材料、医疗材料(牙齿矫正材料)等。 形状记忆效应来源于一种热弹性马氏体相变。一般的马氏体相变作为钢的淬火强化的方法,就是把钢加热到某个临界温度以上保温一段时间,然后迅速冷却,例如直接插入冷水中(称为淬火),这时钢转变为一种马氏体的结构,并使钢硬化。后来,在某些合金中发现了不同于上述的另一种所谓热弹性马氏体相变,热弹性马氏体一旦产生便可以随着温度降低继续长大。相反,当温度回升时,长大的马氏体又可以缩小,直至恢复到原来的状态,即马氏体随着温度的变化可以可逆地长大或缩小。热弹性马氏体相变时随之伴有形状的变化,其晶体结构的变化如图3-3所示(图中Ms表示冷却时开始产生热弹性马氏体的转变温度,Mf表示冷却时转变的终止温度,As表示升温时逆转的温度,Af表示逆转xx的温度)。 形状记忆合金晶体结构随温度的变化图 新型金属功能材料除上述几类以外,还有能降低噪音的减振合金;具有替代、增强和修复人体器官和组织的生物医学材料;具有在材料或结构中植入传感器、信号处理器、通信与控制器及执行器,使材料或结构具有自诊断、自适应,甚至损伤自愈合等智能功能与生命特征的智能材料等。 |