摘 要
随着社会经济的发展交通运输业日益兴旺,汽车的数量在大副攀升。交通拥挤状况也日趋严重,撞车事件屡屡发生,造成了不可避免的人身伤亡和经济损失,针对这种情况,设计一种响应快,可靠性高且较为经济的汽车防撞预警系统势在必行,超声波测距法是最常见的一种距离测距方法,本文介绍的就是利用超声波测距法设计的一种倒车防撞报警系统。 论文的内容是基于AT 论文概述了超声波检测的发展及基本原理,阐述了超声波传感器的原理及特性。对于系统的一些主要参数进行了讨论,并且在介绍超声波测距系统功能的基础上,提出了系统的总体构成。通过多种发射接收电路设计方案比较,得出了{zj0}设计方案,并对系统各个设计单元的原理进行了介绍。对组成各系统电路的芯片进行了介绍,并阐述了它们的工作原理。论文介绍了系统的软件结构,通过编程来实现系统功能。{zh1},通过对系统的误差分析,给出了系统的改进方案。
关键字:单片机 超声波 AT
第1章 绪 论
随着社会经济的发展,交通运输业日益兴旺,汽车的数量在大副攀升。交通拥挤状况也日趋严重,撞车事件屡屡发生,造成了不可避免的人身伤亡和经济损失,针对这种情况,设计一种响应快,可靠性高且较为经济的汽车防撞报警系统势在必行,超声波测距法是最常见的一种距离测距方法,应用于汽车停车的前后左右防撞的近距离,低速状况,以及在汽车倒车防撞报警系统中,超声波作为一种特殊的声波,同样具有声波传输的基本物理特性——折射,反射,干涉,衍射,散射。超声波测距即是利用其反射特性,当车辆后退时,超声波距离传感器利用超声波检测车辆后方的障碍物位置,并利用指示灯及蜂鸣器把车辆到障碍物的距离及位置通知驾驶人员,起到安全的作用。
1.1 超声波检测发展综述
高速度,高效率是现代工业的标志,而这是建立在高质量的基础之上的。设计和工艺人员理应了解:非均一的组织结构,随机出现的微观,宏观缺陷,常常可以有时甚至是只能依靠无损检测技术的运用方可予以发现,评价。当然,这与数十年来多方的重视和广大从业人员的艰辛努力,使无损检测技术在这方面已具有一定的能力有关。现在,在工业发达国家,无损检测在产品的设计,研制,使用部门已被卓有成效的运用,1981 年美国前总统里根在给美国无损检测学会成立 40 周年大会的贺信中就说过:“你们能够给飞机和空间飞行器,发电厂,船舶,汽车和建筑物等带来更大程度的可靠性。没有无损检测,我们就不可能享有目前在这些领域和其他领域的{lx1}地位。”无损检测正在以迅猛之势向纵深发展,客观的需要毕竟是一种专业可以发展的{zd0}动力。 我国无损检测技术是从无到有,从低级阶段逐渐发展到应用普及的现阶段水平。超声波检测仪器的研制生产,也大致按此规律发展变化。 五十年代,我国开始从国外引进超声波仪器,多是笨重的电子管式仪器。如英国的 UCT-2 超声波检测仪,重达 五十年代末六十年代初,国内科研单位进口了波兰产超声仪,并进行仿制生产。随后,上海同济大学研制出 CTS-10 型非金属超声检测仪,也是电子管式,仪器重约20Hg。该仪器性能稳定,波形清晰。但当时这种仪器只有个别科研单位使用,建工部门使用不多。直至七十年代中期,因无损检测技术仍处于试验阶段,未推广普及,所以仪器没有多大发展,仍使用电子管式的 UCT-2,CTS-10 型仪器。 1976 年,国家建委科技司主持召开全国建筑工程检测技术交流会后,国家建委将混凝土无损检测技术列为重点攻关项目,组织全国 6 个单位协作攻关。从此,无损检测技术开始进入有计划,有目的的研究阶段。随着电子工业的飞速发展,半导体元件逐渐代替了电子管器件,更有利于无损检测技术的推广普及。如罗马尼亚 N2701 型超声波测试仪,是由晶体管分立元件组成,具有波形和数码显示,仪器重量 1978 年 10 月,中国建筑科学院研制出 JC-2 型便携式超声波检测仪。该仪器采用TTL 线路,数码显示,仪器重量为 超声波检测技术是我国重点发展和推广的新技术,其具有高精度,无损,非接触等优点。目前,已经广泛地应用在机械制造,电子冶金,航海,宇航,石油化工,交通等工业领域。此外,在材料科学,医学,生物科学等领域中也占具重要地位。国外在提高超声波测距方面做了大量研究,国内一些学者也做了相关研究。对超声波测距精度主要取决于所测的超声波传播时间和超声波在介质中的传播速度,二者中以传播时间的精度影响较大,所以大部分文献采用降低传播时间的不确定度来提高测距精度。目前,相位探测法和声谱轮廓分析法或二者结合起来的方法是主要的降低探测传输不确定度的方法。 超声波检测技术作为无损检测技术的重要手段之一,在其发展过程中起着重要的作用,它提供了评价固体材料的微观组织及相关力学性能、检测其微观和宏观不连续性的有效通用方法。由于其信号的高频特性,超声波检测早期仅使用模拟量信号的分析,大部分检测设备仅有A扫描形式,需要通过有经验的无损检测人员对信号进行人工分析才能得出正确的结论,对检测和分析人员的要求较高,因此,人为因素对检测的结果影响较大,波形也不易记录和保存,不适宜完成自动化检测。 |