摘要:定量分析了水泥物理性能与粒度分布的关系,旨在指导水泥粉磨过程的质量控制。根据试验结果和实际生产经验,提出水泥粉磨细度控制应该以控制粒度分布为最终目标。控制方法应能以足够的准确度确定水泥的粒度分布。以45μm筛余作为日常生产控制参数,同时定期检验30~35μm或55~60μm区间内某一个粒径的筛余,是值得推荐的水泥粉磨细度控制方法。介绍了水泥粒度分布的重要影响因素,包括选粉机选粉效率、助磨剂和分别粉磨等。
0 前言 1 水泥粒度分布与物理性能的数值分析 (1)试验中保持比表面积为220m2/kg不变时,水泥抗压强度与均匀性系数、特征粒径与均匀性系数的关系见图1。图1显示,在相同的比表面积下,3,7,28 d抗压强度均与均匀性系数具有良好的正比线性关系。均匀性系数提高0.1时,3,7,28d抗压强度分别提高1.6,3.6,4.8 MPa,其中28d抗压强度对均匀性系数的变化更加敏感。在相同的比表面积下,随均匀性系数增加,特征粒径以近于乘幂关系降低。特征粒径曲线表明,相同的比表面积的水泥,其粒度分布参数可以在一个非常大的范围内变化。换言之,比表面积不是均匀性系数或特征粒径的单值函数。均匀性系数的提高意味着较粗和较细的颗粒都减少:特征粒径降低意味着颗粒平均粒径降低,水化速率较慢的大颗粒减少;二者综合效果是提高了水化速率和水化程度,从而提高了水泥强度。 (2)试验中保持水泥的特征粒径为18μm不变时,水泥抗压强度与均匀性系数、比表面积与均匀性系数的关系见图2。图2显示,在相同的特征粒径下,3d抗压强度与均匀性系数具有良好的反比线性关系。均匀性系数提高0.1时,3d抗压强度降低2.4 MPa。7.28 d抗压强度与均匀性系数相关性非常微弱。在相同的特征粒径下,随均匀性系数增加,比表面积以近于乘幂关系降低。均匀性系数的提高意味着较粗和较细的颗粒都减少;比表面积降低意味着水化速率较快的细颗粒减少;二者综合效果是降低了早期水化速率,导致早期强度明显下降。 (3)试验中保持水泥的均匀性系数为0.80时,水泥抗压强度与特征粒径、比表面积与特征粒径的关系见图3。图3显示,在相同的均匀性系数下,3,7,28 d抗压强度均与特征粒径具有良好的反比线性关系。特征粒径提高1μm,3,7,28 d抗压强度分别降低0.80,0.83,0.78MPa。在相同的均匀性系数下,随特征粒径增加.比表面积以近于乘幂关系降低。特征粒径增加意味着颗粒普遍变粗,水化速率很慢的大颗粒增加;比表面积降低意味着水化速率较陕的细颗粒减少;综合效果是降低了水化速率,导致强度下降。 与特征粒径比较,均匀性系数对强度具有更加显著的影响。获得提高均匀性系数0.1对应的3,7,28 d抗压强度的增加值,如果依靠降低特征粒径,则特征粒径降低的数值分别是:2.0,4.3,6.2μm。特征粒径对于28 d抗压强度更加敏感,为了获得相同的28 d抗压强度提高幅度,可以使均匀性系数降低0.1,或者使特征粒径降低6.2μm。在实际生产中后者的难度和付出的代价更高,前者则会带来需水量增加的弊端。 1.2 粒度分布特性对标准稠度用水量影响的定量关系 1.3粒度分布特征对凝结时间影响的定量关系 2 水泥粉磨的适宜控制参数 前述定量分析表明,水泥的粒度分布与水泥性能具有很好的相关性,已有的文献也肯定了这个论断。单一的某一粒径筛余或比表面积,如果与粒度分布没有很高的相关性,则不能精细控制水泥性能。或者更准确地说。水泥性能不是某一粒径筛余或比表面积的单值函数,水泥粒度分布也不是某一粒径筛余或比表面积的单值函数。计算得到的4组水泥粒度分布和对应的80,45和32μm筛余值见表1。 表1不同粒度分布和对应的80,45和32μm筛余值表1显示,当水泥的粒度分布发生显著变化时.45μm和32μm筛余均有明显变化,而80μm筛余却可以保持不变。这充分显示了80 μm筛余不宜用作水泥粉磨日常控制依据的原因。使用80μm筛余控制水泥磨生产,当粒度分布发生了明显变化,80μm筛余却只有微小变化。有时根本无法判断这种微小的变化是来自样品自身。还是来自检验误差,也就无法发现粒度分布的变化。 发达国家水泥厂已经普遍重视对水泥粉磨粒度分布的控制。文献推荐水泥粉磨使用45μm筛余和比表面积二个控制参数;文献介绍了某合资厂水泥粉磨细度控制的经验,该厂以32μm筛余和比表面积作为日常控制指标,同时定期检验45μm筛余,通过32 μm筛余和45μm筛余控制粒度分布。 根据前述水泥粒度分布与性能关系的试验结果,并结合实际生产经验,对于水泥粉磨细度控制提出以下建议。 (2)30~60μm区间的单一粒径筛余辅之比表面积可以大致地控制粒度分布,但不能确定粒度分布的均匀性系数和特征粒径的具体数值。30~60μm区间的单一粒径筛余辅之比表面积是一个勉强可以接受的细度控制方法,必须同时定期检验粒度分布,以确定单一筛余、比表面积与粒度分布的关系。 (3)为了提高水泥粉磨质量。获得预期的水泥性能,粒度分布是{zj0}的描述水泥细度的参数。30~60 μm区间的任意二个有一定间隔的筛余值,可以确定粒度分布的均匀性系数和特征粒径。以45μm筛余作为日常生产控制参数,同时定期检验30~35 μm或55~60μm区间内某一个粒径的筛余,可以大致确认粒度分布。以二个筛余数据确定的均匀性系数和特征粒径,可能存在较大误差。应该以较低的频率使用激光颗粒分析仪检验粒度分布,在l0~60 μm的粒径范围选择5~7个筛余数据使用回归分析的方法确定RRSB方程的均匀性系数和特征粒径,用以确认二个筛余数据计算的均匀性系数和特征粒径的误差。笔者认为这是目前最值得推荐的水泥粉磨细度控制方法。 (4)单独使用80μm筛余最糟糕的是水泥粉磨控制方法。原因在于80μm筛余处于RRB分布曲线的端部,其数值对粒度分布的改变不敏感;同时由于多数水泥的80μm筛余数值很小,检验的相对误差很大。 (5)激光粒度分析仪不适宜作为水泥粉磨工艺的日常质量控制检验手段,原因在于仪器操作过于复杂。操作不当时很容易出现误差,但其重要作用不容忽视。无论选择那种控制方式,均应该以激光粒度分析仪或类似仪器定期检验粒度分布,以确定控制方法的有效性。 3 水泥粒度分布的控制方法 3.1选粉机选粉效率对粒度分布的影响 图6和表2显示,在其它条件基本不变的条件下,选粉效率由47%提高到88%,水泥均匀性系数由0.88提高到1.16。选粉效率的提高,一方面意味着成品中粗颗粒的减少;另一方面意味着回粉中细颗粒的减少,从而减少了磨内的过粉磨,减少了出磨水泥(选粉机喂料)的细颗粒数量。导致成品中的细颗粒数量降低。改变选粉效率,得到的与均匀性系数的关系如图7所示。 图7显示,随着选粉效率提高,均匀性系数提高。影响粒度分布参数改变的条件众多,尽管力图保持其它条件基本不变,但实际上很难做到也就很难准确地确定单一因素的影响程度。因此图7显示的结果在定量的意义上有一定误差。 3.2助磨剂对粒度分布的影响 3.3分别粉磨的影响 表3结果表明,在P·I水泥中掺入特征粒径和均匀性系数显著低于P·I水泥的混合材料,均匀性系数由P·I水泥的1.21降低到混合水泥的1.06。分别粉磨可以明显降低均匀性系数。 图8、图9显示,在P·I水泥中掺入特征粒径和均匀性系数显著低于P·I水泥的混合材料后,混合水泥的粒度分布达到明显改善,混合水泥较之P·I水泥更加接近Fuller曲线。 4 结论 (2)均匀性系数对强度具有显著影响,在相同的比表面积下,均匀性系数提高0.1,3d,7d,28 d抗压强度分别提高1.6,3.6,4.8 MPa。 (3)粒度分布是与水泥性能有明确定量关系的细度参数,是水泥粉磨细度控制的最终目标。以单一粒径筛余或单独的比表面积控制水泥粉磨细度的方法不能确定粒度分布,亟待改进。水泥粉磨细度控制方案,应该能够有效控制水泥的粒度分布。 (4)以45μm筛筛余作为日常生产控制参数,同时定期检验30~35μm或55~60μm区间内某一个粒径的筛余,是值得推荐的水泥粉磨细度控制方法。 |