隧道内基本照明的特点是工作时间长,需全天24h照明。根据这一特点,在设计基本照明亮度时考虑了足够的冗余量。由于LED的寿命较长,因此维护系数通常取0.85~0.9。而本项目将基本照明的设计亮度定为标准值的1.3倍,相当于0.77的维护系数。这一数值可使隧道基本照明强度在未来若干年内即使出现一定的光衰,也始终都能满足规范要求。不难看出,灯具投入初期的亮度超出规范基本要求的30,形成一定程度的过度照明。过度照明几乎在所有新装灯具中都是存在的。这是由光源的光衰,灯具易受污染以及光源亮度不可控特性所决定的。它使得现有的照明系统每年浪费了大量的电能。为了避免过度照明造成电能浪费,减小灯具的光衰,延长LED光源和驱动电源的寿命,我们在实际运营时,将基本照明的功率设定在额定功率的80,即所有50W的基本照明灯具的输出功率控制在40W。
在未来的运营过程中,可根据灯具实际光衰情况,逐年递增灯具的输出功率,直至达到100功率输出。本隧道共布置50W的基本照明灯具40盏,合计功率2000W,如果灯具光衰为每年4,则灯具各年的工作功率为{dy}年40W,第二年42W,以此类推,第六年为50W。在运营六年后,灯具的亮度就会低于规范要求。这种控制灯具输出功率的方式是以每年4的光衰为前提的。不同灯具,光衰也会各不相同。散热处理得好,光衰会小于4/年,处理得不好,光衰可能会远大于4,有的甚至高达20。如果光衰为2,那么基本照明可在满足规范的亮度下连续运营长达11年。
隧道照明与道路照明不同,它除了设置贯穿于整个隧道的基本照明外,还需要在出入口附近设置用于白天照明的加强照明,且照明强度比基本照明高许多,以防止车辆驶入隧道时出现“黑洞效应”。我们在两个入口段共布置了20盏150W的LED灯具,过度段共布置了18盏100W和10盏50W的加强照明灯。加强照明光源功率合计5.3kW,含电源功率为6.24kW。相对基本照明而言,功率已相当大。隧道照明的入口段和过度段的照明强度是根据洞外亮度乘以一个折减系数得来的。
洞外亮度的大小直接影响到洞内的照明强度。虽然我们在计算洞外亮度时,是按照夏天晴天中午的{zd0}值来计算的,但一年中这一亮度出现的时间仅有百分之几,其他大部分时间洞外亮度均在10~60之间变化,主要是因季节、天气和时辰的不同而各异。展示出了隧道内不同光源的白天开灯功率与高压钠灯的设计功率之比,称之为功率线。高压钠灯的每日开灯功率与设计功率之比,中间一条直线是恒定亮度的LED灯每日开灯功率与高压钠灯的设计功率之比,下面二条曲线分别是亮度可控型LED灯在夏至和冬至时白天的照明功率与高压钠灯的设计功率之比。各照明功率线下方的面积即为该灯当日的照明能耗比。其中恒定亮度的LED灯每日开灯功率与亮度可控型LED灯在夏至中午的照明功率差值为设计维护系数。采用恒定亮度的灯具,则隧道一年的绝大部分时间均处在过度照明状态,电能浪费现象严重。通过积分运算可得LED无级调光系统在夏至和冬至这两天的晴天照明能耗仅为高压钠灯的31和21为恒定亮度LED灯的54和37,其他时节的能耗均在这之间。由此可以看出,公路隧道照明采用LED无级调光系统具有相当大地节能空间。本设计正是采用了亮度可控型LED隧道灯及其亮度智能无级控制系统来为隧道加强照明调光。不论隧道洞外亮度如何变化,该系统都能够对其进行自动跟踪,计算出洞内实际亮度需求并控制灯具输出相应地光通量,实现了按需照明的目标,{zd0}限度地节约了电能。
在高速公路隧道中,应急照明亮度应不小于基本照明亮度的10,且布设间距一般在20~30米一盏。这种传统的布设方式使得应急照明状态下的照度均匀度极差,这在突然停电的情况下依旧存在较大地事故隐患。因此,我们在设计应急照明系统时放弃了传统的大间距布设方式,充分利用LED灯的亮度可控特性,将所有的基本照明灯全部兼作应急照明灯。当市电断电时,由EPS电源为基本照明灯具供电。此时瞬间将基本照明灯具的功率同步控制到额定功率的20左右。这使得系统在市电断电情况下应急照明的配光特性与原先的基本照明相同,{zd0}限度地避免了交通事故的发生。在灯具安装后,我们对现场应急供电情况进行了验证,在市电断电瞬间,加强照明全部熄灭,基本照明灯具的亮度全部保持在低亮度状态,经测试,应急照明状态下路面平均亮度为0.6cd/m2,达到了预期的设计目标。
|