航空母舰弹射器介绍
重型飞机要想从航空母舰上起飞,必须有蒸汽弹射器。在飞机起飞前,由位持器钢圈把尾部扣在一个坚固点上,飞机前轮附近的牵引杆垂落到一个“滑梭”内,滑梭以挂钩钩住飞机。滑梭是蒸汽弹射器{wy}露在飞行甲板上的零件。飞机前面的甲板下,有两个平行圆筒,每个至少长45米,筒中的活塞与所有滑梭相连。蒸汽由母舰上的锅炉输出,增压后输入滑梭。飞机起飞时开足马力,但被位持器扣住。蒸汽弹射器一启动,飞机引擎的动力加上蒸汽压力,使钢圈断开,飞机前冲,在45米距离内达到时速250千米。飞机弹射起飞脱离滑梭后,活塞前端的注管就落入水池,在几米的距离内停顿,滑梭移回原位,推动另一架飞机起飞。母舰上每个蒸汽弹射器每分钟可推动两架飞机起飞。通常航空母舰最多装设4个蒸汽弹射器。
要构件包括三部分:
(1)弹射器做动系统:开口活塞筒体、活塞环、引出牵引部分、U型密封条、导气管、模度气动阀门、排气阀、安全阀、测距仪、压力传感器。
(2)弹射器附属系统:海水淡化设备、贮水池、高压水泵、锅炉、加热装置。
(3)弹射器控制系统和导流板。
下面,具体介绍如下:
一、海水淡化设备及贮水池
航母即使没有弹射器(如采用滑跃起飞的),也有海水淡化设备及贮水池,因为生活用水、机器用水也需要淡水,从陆地上补给淡水只是一些近海防卫型护卫舰的办法。有了海水淡化装置,军舰远洋作战能力大大增强,对补给依赖低,而航母是远洋型军舰,不能没有海水淡化装置。有弹射器的航母,不仅生活淡水消耗量大,而且弹射器消耗量更大,根据美军记录:每起飞一架飞机,约消耗1吨淡水。目前,海水淡化技术比较成功的有低压蒸馏及膜透法。其中膜透法已广泛用于民用海水淡化水厂。当然,有了淡化设备还必须有贮水池,用于贮备淡水。
二、高压水泵、锅炉和加热装置
高压水泵的用途是把淡水从贮水池中抽入锅炉,以抵消释放蒸汽而消耗的淡水。由于锅炉在使用时压力很高,高压水泵必须有很高的压力才能把水补充进去,所以高压水泵不仅要有强大的动力以形成很高的压强,而且要有很高的抗压性,对轧钢和焊接工艺提出很高的要求。高压水泵是根据锅炉内淡水量的多少自动补充的,不过早期的是手动控制的,显得比较落后。
锅炉是提供蒸汽的设备,实际上锅炉就是一个储能装置,民用的锅炉比较多,航母用的锅炉原理上与民用没什么区别,但航母的锅炉更大、耐压性能更高,安全标准更高。即使如此,美国与英国航母还是发生过锅炉爆炸和烫死人的事故。高压锅炉对水质的要求也高,高盐、高硬度的海水根本不能进入锅炉。锅炉工作时要消耗大量蒸汽,如果以最小间隔进行弹射,需要消耗航母锅炉20%的蒸汽。
加热装置很多,美国现役核动力航母都是利用反应堆加热,以保证其有足够的能量释放给弹射器。加热装置也是受控的,但在战争时期锅炉是不能熄火的,以保证紧急情况下随时起飞飞机。不能熄火,就意味着锅炉随时消耗大量的能源,如果是常规动力航母,其燃料费用十分巨大。美军之所以发展核动力航母,也是为了在经济上节省能源开支,毕竟从长期来看,核动力运行成本较便宜。
三、开口活塞筒体、活塞、引出牵引部分和U型密封条
航母所用的弹射器早期采用闭口活塞,不过需要一个非常长的动力传动杆把蒸汽能量传给需起飞的飞机,由于几十米长(近百米)的传动杆中间无支点,导致存在传动杆下垂现象,而且会经常把传动杆顶弯的事故发生。后来工程技术人员把传动杆推力改为拉力起飞,解决了这个问题,但发现活塞与传动杆连在一起重量实在太重(大部分重量是传动杆),由于起飞时间短,蒸汽做功很大一部分都消耗在做在了活塞与传动杆上,而且停止时还必须用缓冲器。后来工程技术人员采用活塞开口,活塞环的动能直接从开口处把能量传出去,由于取消了传动杆,大大减少了重量,也同时提高了效率,可以毫不夸张地说:这是一场弹射器的革命,这种方法一直沿用至今。
2 航空母舰弹射器介绍
当然,由于采用了开口活塞筒,其开口对称的筒壁就需要相应加厚,否则在蒸汽的高压下,开口处会增大,导致密封不紧、蒸汽外泄。实际上,除对称筒壁加厚外,开口活塞筒外壁也要加固。
由于采用了开口活塞筒,{zd0}的麻烦是活塞的密封刀经过开口时的密封问题。其实,弹射器活塞与普通活塞没什么两样,不过弹射器上的活塞较长一点,一是增强其稳定性,二是由于密封刀必须非常薄,而推力又比较大,所以只有增加密封刀宽度才能解决问题,而密封刀宽度增加了,活塞也需加长一点。不过,虽然活塞长了,重量并不增加多少,原因是其中间是空的(并非xx空,还有部分钢构),而且活塞为双向密封的。
引出牵引部分是通过密封刀与外部件连接起来的,但弹射器{zd0}的麻烦之处就在于密封刀与U型密封条的结合处。由于密封刀经过时必须把U型密封条在接口处顶开,顶开后与密封刀接缝处肯定会泄漏蒸汽,如果U型密封条的密封力很大,密封效果肯定很好,但密封刀阻力也会越大,U型密封条磨损也就越快,所以为了很好地解决密封、运行阻力及U型密封条磨损问题,美国率先采用了“高压细流水密封技术”解决了这个问题。虽然还会有些蒸汽外泄,但密封刀的磨擦阻力与U型密封条磨损率已经大大降低。不过,不要认为这样就xx了,U型密封条磨损仍然是困扰弹射器的{zd0}心病,日常维护与检修都相当麻烦,虽然一直在不断改进材质及采用新技术,但至今仍不能令人满意,美军对此意见很大。
四、导气管、模度气动阀门、排气阀和安全阀
导气管是把锅炉里的蒸汽导入弹射器,以迫使弹射器工作。模度气动阀门的作用是控制蒸汽进入的速度。由于气动模度阀门有开关迅速及开度易控制的特点,所以气动模度阀门可以控制蒸汽压力而达到控制弹射器的目的。排气阀作用是把活塞筒内的蒸汽排出去。安全阀是为了防止弹射器筒体内压力过高而采用的保护设备。
五、测距仪、压力传感器及控制系统
安装在弹射器上的测距仪可以xx地测出弹射器位置及弹射器的速度,而两侧的压力传感器可xx地读出弹射器内的压力,这些数据以极快的速度送入智能控制处理器(相当于PLC)。智能控制器处理这些数据后,准确控制气动模度阀门,从而达到起飞飞机的目的,也能通过控制气动阀门使弹射器返回原来位置。
弹射器还装有其它仪表,如锅炉水位计、温度计、压力传感器等,这些都要由智能控制器总体控制、统一管理,这样才能使弹射器效率大大提高。
六、燃气导流板
在弹射前,舰载机的喷气发动机已经全速运转,会向后喷射出高温高速燃气流,对后面的人员和器材危害甚大。这时,弹射器后方张起的挡板可使燃气流向上偏转,不会喷向后面甲板,这些挡板叫“偏流板”或“燃气导流板”。一般来讲,每个弹射器后面有一组共3块燃气导流板。当单发飞机起降时张开正中一块;当双发飞机起降时三块都张开。为降低燃气流的灼热温度,燃气导流板后面都装有供冷却水循环流动的格状水管。燃气导流板要求耐高温、耐冲击,能经受忽冷忽热和飞机降落时的强大冲击力,加工制造难度很大。
七、其他设备
其实,不要以为以上这些就是航母弹射器的全部设备,实际上还有弹射器固定装置、降温装置、专用维修工具和专用维修通道等。为了保证弹射器正常运行,航母上每天有数十人(至少40-50人)为运行、维护和保养弹射器而忙碌不已。
八、弹射器工作流程
(1){dy}步:弹射飞机
当锅炉的蒸汽可以满足弹射使用时,模度气动阀门才能打得开,这时飞机发动机起动,同时弹射器作信号发出,工作侧气动模度阀门打开,同时返回侧排气阀打开,活塞在高压蒸汽推动下同时通过密封刀推动牵引部分带动飞机,使飞机高速运行,活塞另一侧筒内则因压力剧增使余气从排气阀迅速排出,当达到起飞速度时,工作侧气动模度阀门开闭,同时排气阀也开闭,由于活塞没有了外力(蒸汽推力),同时也由于排气阀开闭,使活塞运行时受到极大阻力而停止。当然,为了安全起见,返回侧还是装上了缓冲器。
(2)第二步:弹射器返回
为了弹射另一架飞机,弹射器必须在极短的时间内迅速返回原位,返回时与上述程序相反,返回侧气动模度阀门打开,同时工作侧排气阀打开,活塞在蒸汽压力下返回到原位。当然,返回侧的压力没有弹射侧的高,因为只是让弹射器回来而已。弹射器返回不同于工作,工作时只要飞机起飞了,弹射器立刻停止,而不管弹射器在什么位置(当然不能到头),而返回时则需要弹射器准确地停在起飞飞机的位置上,为方便起飞飞机,同时以减少起飞时间。
九、弹射方式简介
舰载机起飞时都利用弹射器轨道上的滑块把飞机高速弹射出去,而依据舰载机与滑块的联结方法,弹射方式可分为拖索式和前轮牵引式。
(1)拖索式弹射方式是50年xx始使用的老方式,需要8-10名甲板人员先用钢质拖索把飞机挂在滑块上,再用一根索引释放杆把其尾部与弹射器后端固定住。弹射时,猛力前冲的滑块拉断索引释放杆上的定力拉断栓,牵着飞机沿轨道迅速加速,在轨道末端把飞机加速到直起飞速度抛离甲板,拖索从飞机上脱落,滑块返回弹射器起点准备下一次工作。
(2)前轮牵引弹射方式是美国海军1964年试验成功的。舰载机的前轮支架装上拖曳杆,前轮就直接挂在滑块上,弹射时由滑块直接拉着飞机前轮加速起飞。这样就不用8-10名甲板人员挂拖索和捡拖索了。弹射时间缩短,飞机的方向安全性好,*作简便。但舰载机的前轮起落架需要做专门设计并加固,美军现役核动力航母都采用这种起飞方式。
十、蒸汽弹射器的缺陷
(1)维护成本大,U型密封条更换频繁而又十分麻烦,对材质要求高;
(2)使用蒸汽弹射器成本大,效率低,配套设施多,系统烦琐,各个环节要求高;
(3)需消耗大量淡水,美国曾为此考虑过蒸汽冷凝回收装置,终因体积大及效率低而取消。
由于蒸汽弹射器存在以上不足,所以美军对蒸汽弹射器不满,从而催生了电磁弹射器。不过,电磁弹射器现仍处于研制阶段,短期内很难投入美军现役 !