热电技术指南

2.1热电材料:在目前的热电制冷器件中最常用到的半导体热电材料是碲化铋。目前工业上已经可以通过掺杂得到p型和n型碲化铋块体或者器件单体。


热电材料的制备方法通常是熔体定向晶化法或者粉末压制成型法。每种制备方法都具有各自的优势,定向生长的方法更为普遍。除了碲化铋之外,另外还有包括碲化铅,硅锗合金,铋锑合金等体系分别应用在不同的条件下。图2.1是不同材料的热电优值系数随温度变化的曲线。

从图中,我们可以看出,碲化铋的{zd0}热电优值系数所出现的温度在室温,适合于大多数热电制冷的应用条件。

Figure (2.1) 各种热电材料的热电优值系数与温度变化的曲线示意图

2.1.1 碲化铋基热电材料:碲化铋晶体具有很多性能特点,使其成为很好的热电材料。碲化铋晶体具有xx的各相异性。这导致碲化铋在平行于c轴方向比垂直于c轴方向的电阻要大四倍。同时,平行于c轴方向的热导比垂直于c轴方向要大2倍。也就是说,电阻的各向异性现象比热导要明显,所以,{zd0}的热电优值系数出现在平行于c轴的方向上。由于这种各向异性,在热电单体组成热电制冷器的过程中,晶体生长方向要平行于每个单体的长度或者高度方向而垂直于陶瓷基底。


另外,碲化铋还有一个与晶体结构有关的有趣特征。碲化铋晶体是由许多相似的六方层状结构组成的。

碲原子和铋原子层被共价键紧密的结合在一起,而碲原子[Te1]和碲原子[Te1]之间是由相对较弱的范德华键连接的。因此,碲化铋的解理面是沿着[Te1] [Te1]原子层,这与云母的性质非常相似。幸运的是,解理面一般是与c轴平行的,所以在热电制冷器中的材料是非常坚固的。

2.1.2 通过定向生长得到的碲化铋材料通常是铸锭状态,需要通过切片得到不同厚度的晶圆。表面进行适当处理以后,这些晶圆被进一步切割,以获得可以组装成热电制冷器的块体。另外,碲化铋块体,也称为单体,也可以通过粉末压制成型技术制备。

2.2热电制冷器件:实际应用中的热电制冷器一般包括两个或多个半导体电偶臂。使用导电和导热性都比较好的导流片串联成一个单体。而一个热电制冷器一般是由一对或者多对这样的单体重复排列而成,从电流通路上看,呈串联方式;从热流通路上看,呈并联方式。这些单体和导流片通常都被安装在两片陶瓷基板之间。这些基板的作用是将所有的结构机械性的连接在一起,并且保持每个单体与其它结构和外界焊接面之间相互绝缘。当安装好所有的部件之后,这些热电制冷器一般是2.5-50 mm的正方形表面,高度为2.5-5 mm的块体。


Figure (2.2) 典型热电制冷器的结构示意图

2.2.1 热电制冷器中需要同时使用p型和n型碲化铋材料。使用这种排布方法可以保证,在电流沿着p型和n型电偶臂在基片之间来回流动时,热流只是沿着一个方向运动。通过掺杂使n型材料中产生过量的电子(多于组成完整晶格结构需要的电子数)而在p型材料中产生空穴(少于组成完整晶格结构需要的电子数)。这些n型材料中的多余电子和p型材料的空穴就是热电材料中负责输运电能和热能的载流子。图2.2描述的是一个典型的热电制冷器在加载电流之后,热量输送的过程。大多数热电制冷器是由相同数量的n型和p型电偶臂所组成的,这里一个p型和一个n型电偶臂组成了一对温差电偶对。比如说,上图所示的模型里面有两对p型和n型电偶臂,也就是说有两对温差电偶对。


在热电制冷的过程中,热流(被实际吸收在热电制冷器里面的热量)正比于制冷器上加载的直流电流的大小。通过在0到{zd0}值之间调整加载电流的大小,可以调整和控制热流和温度。



郑重声明:资讯 【热电技术指南】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——