传感器技术及应用

 

 

 

 

Abstract:

This paper makes a deep research of sensor technology. It mainly demonstrates sensor technology in four parts, including the principles of typical sensors, development of sensor technology, the performance indicators of sensor and the category of sensor technology. On the basis of the research, an application is initiated proposed in the end of the paper, which can be useful in real world.

 

 

 

摘要:

本文对传感器做了深入的调研,从传感器的原理、传感器技术的发展过程、传感器的性能指标、传感器的技术分类等几个方面对传感器做了分析。并在此基础之上创造性的提出了一个基于传感器应用模型,具有一定的使用价值。

 

关键词:传感器  


 

传感器是现xx测和控制装置的重要组成部分,在现代科学技术领域中的地位越来越重要,是现xx测和控制系统的重要组成部分。传感器是将非电量信号转换成电量信号的装置[1],其作用就是把被测量的非电量信号(如力、热、声、磁和光等物理量)转换成与之成比例的电量信号(如电压和电流),然后再经过适当的测量电路处理后,送至指示器指示或记录。

一.传感器的原理

非电量至电量的转换是应用不同物体的某些电学性质与被测量之间的特定关系来实现的,例如利用电阻效应、热电效应、磁电效应、光电效应和压电效应等关系。应用不同物体的独特的物理变化,设计和制造出适用于各种不同用途的传感器。

传感器一般由敏感元件、转换元件和测量电路三部分组成,有时还需外加辅助电源。组成方框图如图1所示。 敏感元件能够直接感受或响应被测量;转换元件能够将敏感元件感受或响应的被测量转换成适于传输或测量的电信号;信号调理转换电路能对传感器输出的信



 

图1 传感器组成图

号进行放大、运算调制。

二.传感器的发展过程

我国传感器产业正处于由传统型向新型传感器发展的关键阶段,它体现了新型传感器向微型化、多功能化、数字化、智能化、系统化和网络化发展的总趋势。传感器技术历经了多年的发展,其技术的发展大体可分三代[3]:

{dy}代是结构型传感器,它利用结构参量变化来感受和转化信号。

第二代是上70年代发展起来的固体型传感器,这种传感器由半导体、电介质、磁性材料等固体元件构成,是利用材料某些特性制成。如:利用热电效应、霍尔效应、光敏效应,分别制成热电偶传感器、霍尔传感器、光敏传感器。

第三代传感器是以后刚刚发展起来的智能型传感器,所谓智能传感器是指对外界信息具有一定检测、自我诊断、数据处理及自适应能力,是微型计算机技术与检测技术相结合的产物[2]。

三.传感器的性能指标

传感器的特性是指传感器的输入量和输出量之间的对应关系。通常把传感器的特性分为两种:静态特性和动态特性。传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征静态特性的主要参数有:

1.灵敏度

    指沿着传感器测量轴方向对单位振动量输入x 可获得的电压信号输出值u,即s=u/x。与灵敏度相关的一个指标是分辨率,这是指输出电压变化量△u 可加辨认的最小机械振动输入变化量△x 的大小。

一般地,在传感器的线性范围内,传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽量减少从外界引入的干扰信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。  

2.响应特性(迟滞)

迟滞是表明传感器输入-输出特性曲线在正行程时与反行程时的输出量不重合的程度。传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过大的误差。  

3.线性范围

传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证{jd1}的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。  

4、稳定性

传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。

5、精度

精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用{jd1}量值精度高的;如果是为了定量分析,必须获得xx的测量值,就需选用精度等级能满足要求的传感器。

传感器的动态特性是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。

四.传感器主要技术分类

1 光电传感器技术

光电传感器技术又称为光传感器技术,是将光信号转化为电信号的一种传感器技术。[4]光电传感器技术可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等,也可用来检测能转换成光电量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度、以及物体形状、工作状态等,光电传感技术具有非接触、响应快、性能可靠等特点,目前主要应用于工业自动化装置和机器人技术中。

2 多传感器技术

传感器是获取信息的工具。多传感器信息融合技术军事上的成功应用后,大大提高了传感器系统的可靠性和鲁棒性、扩展时间上和空间上的观测范围、增强数据的可信任度、增强系统的分辨能力。多传感器技术主要是信息融合技术,除此以外还包括多传感器阵列制作,多传感器系统的性能分析,多传感器系统的整体设计与管理等等。

3 生物传感器技术

生物传感器技术是一种将生物化学反应能转化成电信号的分析测试技术,以此而制成的传感器装置具有选择性高、分析速度快、操作简易和价格低廉的特点。作为一门在生命科学和信息科学之间发展起来的一门交叉学科,生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。

五.应用系统模型

 略。

 

 

参考文献:

[1] 传感技术综述 苏艳阳等  数字通信 2009-06

[2] 传感器技术应用综述及发展趋势讨论 陈津 科技创新导报 2008 {n1}0

[3] 传感技术发展  欧印庭等  中国电工网 2006-11

[4] 传感器大全分类查询表(工具书)

已投稿到:
郑重声明:资讯 【传感器技术及应用】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——