随着逆变技术以及现代数字化控制系统的发展,使得超短弧电压喷射过渡焊接的应用成为可能。新型的焊机有足够快的调节速度,在短路断开后达到正常电弧电压前,控制住焊接电流的过高增长,同时也控制住单位时间内焊机的输出能量。 概述 气保焊中的喷射过渡在实际焊接操作中应用广泛。喷射过渡一般出现在使用较大的焊接电流和采用惰性气体或高含氩混和气体时的情况下。20世纪80年代末,德国标准DIN 1910-4对喷射过渡做了如下定义,“在喷射过渡中焊丝熔滴是以微细颗粒的方式过渡到焊缝中,熔滴过渡中不会出现短路。”喷射过渡时电弧的电压较高,也就是说电弧较长)。此时电弧稳定性降低,电弧受磁偏吹的影响易发生偏移,容易出现焊缝咬边和气孔的生成,另外对合金的烧损也比较严重。这时,对喷射过渡的实际应用产生了不利的影响。 超短弧电压喷射焊接熔化极气保焊先驱之一——Hans-Ulrich Pomaska 曾提出过“能量集中的短弧喷射过渡”方法。此种方法是将喷射过渡的电弧电压少许降低,结果是在焊接过程中不可能xx避免短路。如果短路持续时间很短,尽管会出现电压陡降,但电流却来不及大幅度上升。在这种状态下焊接也不会出现飞溅,只是有一些小小的喷溅。焊接中听到的声音是轻微的噼啪声,而不是紊乱的嘈杂声,这种电弧很快被应用到实际工作中。德国标准中相应的喷射过渡的定义也改为,“熔滴过渡是以细微颗粒方式进行,熔滴过渡中几乎不出现短路。” 如果进一步降低喷射过渡的电弧电压,会使熔滴短路的时间延长,造成严重的飞溅。尽管在理论上希望电压降低,但在实际中却迄今都难以运用。随着逆变技术的发展以及现代化的数字化控制系统的发展,使得超短弧电压喷射过渡焊接的应用成为可能。新型的焊机有足够快的调节速度,在短路断开后达到正常电弧电压前,控制住焊接电流的过高增长,同时也控制住单位时间内焊机的输出能量。这样可以大幅度减少短路过渡时产生的飞溅,使超短弧电压喷射过渡能够成功地应用于实际操作中。这一新型的焊接电弧形式,我们称之为“EWM forceArc-超威弧” 高速摄像机拍摄的静态图片 “强制电流” 与短喷射弧焊相比,“超威弧”焊接技术通过不断降低弧压来减少弧长。从高速摄像机所拍摄的一张静态图片中可以看出,电弧在等离子压力下形成熔池,熔滴尺寸均匀,而且形成速度很快。对于此类型熔滴,它们不可避免的会偶尔粘结在一起形成熔滴链再接触到熔池,这就提供了一个短路条件,在整个过程中如果没有控制系统的干预,在重新起弧时将会形成较大的飞溅。这种相对较长的短路状态下电流和电压的变化情况,我们可以用短弧焊中短路过渡方式的一个周期来解释,这是一个非常典型的过程。当熔滴和熔池接触时,电压首先降低,因为这时的电弧电阻和先前比起来相对较小,电流在电压降低之后才会上升到短路电流。“强制”喷射电弧焊中,程序通过控制来阻止能量(电流×电压×时间)剧增,所以在焊接过程中可以很快越过飞溅最容易产生的区域,从而达到避免飞溅的目的。 短路时的电压电流曲线短路、(b)和(c)熔滴转移、(d)重新起弧如果使用的是传统的焊接电源,不可能让焊接电流在短时间内下降,这是因为在一般的电源中,由于变压器和电抗器感抗的存在,不允许电流有这么快的变化速度。而在逆变技术中,我们是通过电子控制的方式控制电感量。例如,在短路过渡中,电抗器可以被xx关闭,这意味着惟一的电抗存在于电缆引线之间,也就是在短路状态和重起弧过程中电流的上升和下降可被快速调节。这样就可以xx阻止飞溅的产生。要xx地控制电流上升和下降的时间,对电源的电压反馈回路要有更高的要求:硬件电路必须能够在短暂的时间内采集到电压的改变,并反馈给控制回路。“EWM 超威弧”焊接过程中出现短暂短路时,电压和电流并没有出现大的波动,这就阻止了飞溅的产生。具有这种快速反应的焊机的另一个优点是:在焊接时可以允许焊丝伸出焊枪较长。有些焊接部位焊枪不易达到,用“EWM 超威弧”焊接却能对这些部位进行焊接。增强的熔化穿透特性显著提高了成型效果,使根部成型更紧密、更狭窄。\显示的是强力超威弧焊(左)和常规短弧焊(右)焊接“T”型接头的效果对比图。使用“EWM 超威弧”焊接,焊缝宽度较窄,熔深增加。横截面比较 “T”型接头(:强力超威弧焊;常规短弧喷射过渡焊) forceArc-超威弧的特点 新式电弧工作在喷射过渡区。其焊接电流范围在常规的喷射过渡电弧或长弧电弧的电流范围,与常规喷射弧相比,新式电弧焊具有以下优点:强大的等离子电弧推力造就了高熔深;手工作业时可轻松保持电弧的方向稳定;短弧焊接避免产生焊缝咬边;高效的焊接速度使工作事半功倍;高品质的焊缝归功于窄而小的热影响区;焊接能量小使得工件变形减少。 forceArc-超威弧的焊接电源 毫无疑问,一种新式的电弧必须联合一个现代化的焊机才能相得益彰。只有得到逆变电源和数字化记录管理系统的支持,焊机才能对用户的操作指令具有很高的响应性。实现超威弧焊接对焊接电源有更高的要求,只有在逆变电源中采用先进灵敏的数字化控制系统才能保证超威弧优秀的焊接效果。EWM公司的{zx1}研究力作——“EWM-forceArc”焊机,该机器除了能进行超威弧焊外,还可用于MIG/MAG常规焊、MIG/MAG脉冲焊、手弧焊和TIG焊。PHOENIX 500 EXPERTPULS forceArc 焊机 forceArc-超威弧焊接的应用领域 超威弧焊接技术尤其适用于机械工程、设备工程、钢结构、造船业、容器、高压容器、设备建造以及海上作业。适用的焊接材料为碳钢、合金钢、铝及铝合金。焊材厚度一般在5mm以上。适用焊丝的直径为1.0mm和1.2mm(碳钢、不锈钢)以及1.2mm和1.6mm(铝和铝合金)。保护气根据被焊材料可用纯氩或高含氩的混和气体。
焊接技术自发明至今已有百余年的历史,工业生产中的一切重要产品,如航空、航天及核能工业中产品的生产制造都离不开焊接技术。当前,新兴工业的发展迫使焊接技术不断前进,如微电子工业的发展促进了微型连接工艺和设备的发展;陶瓷材料和复合材料的发展促进了真空钎焊、真空扩散焊、喷涂以及粘接工艺的发展。所以焊接技术将随着科学技术的进步而不断发展,主要体现在以下几个方面:
1 能源方面 目前,焊接热源已非常丰富,如火焰、电弧、电阻、超声、摩擦、等离于、电子束、激光束、微波等等,但焊接热源的研究与开发并未终止,其新的发展可概括为三个方面:首先是对现有热源的改善,使它更为有效、方便、经济适用,在这方面,电子束和激光束焊接的发展较显著;其次是开发更好、更有效的热源,采用两种热源叠加以求获得更强的能量密度,例如在电子束焊中加入激光束等;第三是节能技术。由于焊接所消耗的能源很大,所以出现了不少以节能为目标的新技术,如太阳能焊、电阻点焊中利用电子技术的发展来提高焊机的功率因数等。 2 计算机在焊接中的应用 弧焊设备微机控制系统,可对焊接电流、焊接速度、弧长等多项参数进行分析和控制,对焊接操作程序和参数变化等作出显示和数据保留,从而给出焊接质量的确切信息。目前以计算机为核心建立的各种控制系统包括焊接顺序控制系统、PID调节系统、{zj0}控制及自适应控制系统等。这些系统均在电弧焊、压焊和钎焊等不同的焊接方法中得到应用。计算机软件技术在焊接中的应用越来越得到人们的重视。目前,计算机模拟技术已用于焊接热过程、焊接冶金过程、焊接应力和变形等的模拟;数据库技术被用于建立焊工档案管理数据库、焊接符号检索数据库、焊接工艺评定数据库、焊接材料检索数据库等;在焊接领域中,CAD/CAM的应用正处于不断开发阶段,焊接的柔性制造系统也已出现。 3 焊接机器人和智能化 焊接机器人是焊接自动化的革命性进步,它突破了焊接刚性自动化的传统方式,开拓了一种柔性自动化新方式,焊接机器人的主要优点是:稳定和提高焊接质量,保证焊接产品的均一性;提高生产率,{yt}可24小时连续生产;可在有害环境下长期工作,改善了工人劳动条件;降低了对工人操作技术要求;可实现小批量产品焊接自动化;为焊接柔性生产线提供了技术基础。为提高焊接过程的自动化程度,除了控制电弧对焊缝的自动跟踪外,还应实时控制焊接质量,为此需要在焊接过程中检测焊接坡口的状况,如熔宽、熔深和背面焊道成形等,以便能及时地调整焊接参数,保证良好的焊接质量,这就是智能化焊接。智能化焊接的{dy}个发展重点在视觉系统,它的关键技术是传感器技术。虽然目前智能化还处在初级阶段,但有着广阔前景,是一个重要的发展方向。有关焊接工程的专家系统,近年来国内外已有较深入的研究,并已推出或准备推出某些商品化焊接专家系统。焊接专家系统是具有相当于专家的知识和经验水平,以及具有解决焊接专门问题能力范围的计算机软件系统。在此基础上发展起来的焊接质量计算机综合管理系统在焊接中也得到了应用,其内容包括对产品的初始试验资料和数据的分析、产品质量检验、销售监督等,其软件包括数据库、专家系统等技术的具体应用。 4 提高焊接生产率 焊接技术 提高焊接生产率是推动焊接技术发展的重要驱动力。提高生产率的途径有二个方面:其一,是提高焊接熔敷率。手弧焊中的铁粉焊、重力焊、躺焊等工艺;埋弧焊中的多丝焊、热丝焊均属此类,其效果显著。例如三丝埋弧焊,其工艺参数分别为2200A X 33V;1400A X 40V 1100A X45V,采用坡口截面较小,背面采用挡板或衬垫,50- 6mm的钢板可一次焊透成形,焊速达到0.4m/min以上,其熔敷效率是手弧焊的100倍以上。其二,是减少坡口截面及熔敷金属量,近10年来最突出的成就是窄间隙焊接。窄间隙焊接采用气体保护焊为基础,利用单丝、双丝或三丝进行焊接。无论接头厚度如何,均可采用对接形式。例如,钢板厚度由50-300mm,间隙均可设计为13mm左右,因而所需熔敷金属量成数倍、数十倍地降低,从而大大提高了生产率。窄间隙焊接的主要技术关键是如何保证两侧熔透和保证电弧中心自动跟踪处于坡口中心线上。为解决这两个问题,世界各国开发出多种不同方案,因而出现了种类多样的窄间隙焊接法。电子束焊、激光束焊及等离子弧焊时,可采用对接接头,且不用开波口,因此是理想的窄间隙焊接法,这是它们受到广泛重视的重要原因之一。
更多、更专业的焊接技术尽在TIPTOP : 欢迎与我们联系;
深圳市宝安区福永街道白石厦工业区东区15栋 邮编:518103 电话:400-666-0963 手机:15820772110 刘生 传真:+86-755-27447410 邮箱:tiptop@tiptoptt.com 海外部电话:+86-755-27308163/27308015 |
||