高频开关通信电源对蓄电池的影响_TelecomPower_百度空间

阀控式密封铅酸蓄电池的充电直接关系到蓄电池在实际使用中的寿命。本文介绍目前所采用蓄电池充电技术出现的一些问题,主要是没有真正实现监控和充电方式与蓄电池实际使用状况和要求的xx统一。电池长期运行时的差错得不到及时纠正,因而影响了蓄电池的实际使用寿命。本文从开关对阀控电池容量及寿命的影响角度,讨论了阀控电池浮充状态的分析判断方法,并提出了通过开关电源在线充放电的控制,来调整阀控电池充电状态的技术,达到对电池在线维护、改善性能、延长寿命的目的。该充电方案可以充分发挥蓄电池的使用价值,用开关电源在线运行方式恢复落后蓄电池组的容量。

关键词:阀控式蓄电池 开关电源 充电参数 在线活化 维护

1 概述

蓄电池是系统不间断运行的保证,但在使用过程中,由于各方面的原因会使其性能提前下降、容量降低。当容量降低到一定程度,就要影响到通信系统的正常运行。随着信息社会对通信系统供电安全性和通讯可靠性的要求越来越高,蓄电池本身运行的可靠性和安全性也已经得到了越来越高的xx。然而,从上世纪80 年代使用阀控式铅酸蓄电池开始,20 多年来人们一直被阀控电池的可靠性问题所困扰,往往是市电发生故障了,系统直流电源也跟着就没了,或者只能维持很短的时间。为此人们作了很多探索,提出了很多阀控电池的失效机理,也对阀控电池的测试作了很多研究,从核对性放电到测量单体电压,再到测试电池静态内阻,也有人提出了蓄电池的测试数学模型等等。但是并没有对阀控式铅酸蓄电池提出有效的维护手段。

本文是从蓄电池在线维护的角度出发,详细介绍传统开关电源蓄电池充电技术出现的一些问题。讨论了开关电源充电方式对蓄电池性能的影响,及其充电参数设置和电池容量的关系;提出了对可能发生或已经表现出的落后电池进行在线维护的技术,详细介绍蓄电池在网运行过程中通过不同的阶段 来调整开关电源充电参数方法来提高电池组的性能,延长蓄电池组使用寿命,并以较为成熟和低成本的技术方案予以实现。

2 现行开关电源充电方式不合理之处

移动通信基站开关电源设备目前所采用蓄电池充电方式均未能遵从电池内部的物理化学规律,使整个充电过程存在着严重的过充电和析气等现象,充电效率低。是造成蓄电池容量下降的一个原因。

目前移动通信基站所使用开关电源设备对蓄电池充电方式是传统恒压充电方式,用于技术状态良好的蓄电池进行补充充电是可行的。然而移动通信基站开关电源之所以采用恒压充电方式,充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于{zj0}充电曲线。用恒定电压快速充电。由于充电初期蓄电池电动势较低,充电电流很大,随着充电的进行,电流将逐渐减少,因此,只需简易控制系统。 这种充电方法电解水很少,避免了蓄电池过充。但在充电初期电流过大,对蓄电池寿命造成很大影响,且容易使蓄电池极板弯曲,造成电池报废。

采用恒压充电时,一个重要问题就是要选择适当的充电电压,若充电电压选得过高,则充电初期的充电电流就会过大,这对蓄电池不利;若充电电压选得过低,不仅会使充电速度减慢,而且会过早地停止充电,造成蓄电池充电不足。所以若选择的充电电压适当,则既能防止充电初期充电电流过大,又能使蓄电池基本上充足电。恒压充电的缺点是充电电压恒定,充电电流不能控制和自由调节因此不能适应对各种不同技术状态的蓄电池进行充电,同时也不能保证蓄电池彻底充足电。

3 开关电源的充电管理

高频开关电源具有电池管理系统。它采用二级监控模式,能对电池的端电压、充放电电流、电池房温度及其它参数作实时在线监测。可准确根据电池的充放电情况估算电池容量的变化,还能在电池放电后按用户事先设置的条件自动转入限流均充状态,通过控制母线电压来完成电池的正常均充过程,并可自动完成电池的定时均充维护,均/浮充电压温度补偿等工作,实现了全智能化,不需任何人工干预。

电池管理的基本思想是:以电池组保有容量、电池充电电流为依据,控制电池由浮充转入均充。以充电电流,充电时间为依据,控制电池由均充转入浮充。如果系统配有温度传感器,其均/浮充电压可根据温度作适当补偿。

保证负载电流基本不变,以电池电流和总负载电流作为主要参考依据(主要输入基准),通过调节模块输出电压及限流点,稳定负载电流,控制电池电流及电压,防止电池充电过流。

电池管理曲线如图1所示。监控模块可以实施对电池的全自动管理。为了实现此功能,各充电模块必须设置在“自动”工作状态。

图1 监控模块的工作曲线

监控模块对电池的智能化管理主要体现在以下三种工作状态中。

3.1 正常充电状态

监控模块自动记录均充和浮充的开始时刻,在上电初始如果监控模块发现均充过程尚未结束,则会继续进行均充。如果上电前是处于限流均充状态,则继续进行限流均充,如果是处于恒压均充状态。则继续进行恒压均充。在限流均充时。当充电电压达到恒压均充电压值的时候,会自动转入恒压均充。

在浮充情况下,若浮充电流大于设定值(转均充参考电流),或电池组剩余容量小于设定值(转均充容量比),则监控模块会自动控制模块进行均充。对电池进行均充时,充电电流应该是监控模块设置的限流值,此阶段为电池恒流充电阶段,电池的电压是随着时间增加而增大的:当电池电压增大到一定值时,充电进入恒压阶段,在恒压阶段,充电电流不断减小,以充电电流减小到0.01C10A为开始计时点,3 小时后恒压充电阶段结束,充电电压降低,投入浮充状态。至此充电过程完成。充电控制曲线如图2所示。

图2 蓄电池正常充电模式

3.2 定时均充状态

用户可选择是否采用定时均充这种维护方式,还可对定时均充的时间间隔及每次均充的时间进行设定。一旦设定。电池管理程序就可自动计算电池定时均充的时间,以便确定在何时启动定时均充,何时停止定时均充,所有这些操作都是自动进行的,运行维护人员可在现场通过监控模块上的显示来明确这一过程,也可在远程监控中心的主机上查看这一过程。一般电池每隔30 天均充一次。

3.3放电后均充状态

交流停电后,电池组放电,给设备供电。再次恢复交流供电时,若电池电流大于设定值(转均充参考电流)。或电池组剩余容量小于设定值(转均充容量比),则监控模块会自动控制模块进行均充。在监控模块的软件设置中,电池放电后,转均充条件有两个:电池现有容量、电池电流。两个条件中的任意一个达到即进行转换。

3.4 温度补偿

用户可选择是否对均/浮充电压进行温度补偿,并可对温度补偿中心点,温度补偿系数进行设置。一旦设定,监控模块就会根据电池房的温度自动对均/浮充电压进行调节。

3.5 容量分析

用户可设置电池的充电效率、放电特性曲线等参数来调整电池容量的计算结果。监控模块可根据电池电流、充放电状态以及充放电系数对电池容量进行估算。公式为Q=IXA,每隔15 秒计算一次电池容量的变化量,并在菜单上实时显示出来,使用户能一目了然地看到电池容量的实时变化。

3.6 自动与手动相结合

监控模块可在“自动”和“手动”两种方式下工作,在“自动”方式下。监控模块可自动完成上述的所有功能,xx不需人工干预:在“手动”方式下,电池的管理交给维护人员来完成。维护人员可手动调节模块的输出电压实现电池的均/浮充转换:通过对模块的限流点调节。实现对电池的限流调节。此时监控模块只通过通讯口采集各模块的数据及配电数据。不对模块作任何控制处理。因而不会在放电后作自动均/浮充转换。也不会启动定时均充,但仍可对电池的容量进行估算。由于长期均充会导致电池寿命下降,为了防止在“手动”方式下均充时间过长,监控模块会自动监视均充时间。当均充时间超过用户设定的定时均充时间时,就会转入浮充。

4 合理管理的效果

根据以上的介绍分析,蓄电池的运行状况,受控于与之联接配套的直流配电模块整流和智能管理于一体化的高频开关电源。蓄电池在容量正常时,就是在网运行1~3年该充电方法是xx可行的。但是移动基站移动通信基站蓄电池时常处在频繁放电、深放电、过放电状态下及使用环境较恶劣,加上开关电源对蓄电池充电方式的技术的局限性。如蓄电池只有在xx放电的情况下才能够检测到其真实容量,而在正常使用情况下是无法检测到。开关电源所采集的蓄电池放电电压、放电电流以及放电时间,来实现简单的容量估算。另外,蓄电池在没有充电饱和的情况下放电,所计算出来的容量也不是真实容量。每次开关电源的均充电是根据电池组剩余容量、电池充电电流为依据,控制电池由浮充转入均充,以充电电流,充电时间为依据,控制电池再由均充转入浮充。在蓄电池容量下降后或出现硫化后以上的判断条件将无法满足充电要求。由于移动通信基站蓄电池日常充电维护管理主要靠开关电源设备,因此解决蓄电池容量下降问题更本出路在于开关电源充电问题。

在蓄电池组实际运行时,开关电源并不是对每个电池单独控制充电的,而是控制整组电池的充电电压。如要求单体浮充电压为2.25V时,对通信电源的24节电池组,则整组电池电压设为:24×2.25=54V;这时,由于电池生产过程中材料、工艺等非一致性,导致了单体电池性能参数的非一致性,每个单体电池并没有按理想设定的浮充电压(2.25V)在充电!虽然流过各单体电池的浮充电流是相同的,但由于电池组中各单体电池特性存在离散性,这个浮充电流对某些电池可能是过量的,对某些电池又是欠量的,而且这种过量和欠量又是动态的,在不同的使用环境(如温度影响)、使用年份(如充放电次数)等物理因素和蓄电池内部硫酸盐化进程等因素的作用下会发生不规则的变化,造成蓄电池单节的自放电率出现差异, 导致保有容量出现差异,这种状况在现行的充电运行方式下是无法干预的。因此在达到现行的所谓电池充足标准下,各电池其实处于程度不等的“荷不满”。由于电池处于“荷不满”状态,试图用各种方法去检测其容量,也就变得毫无意义,因为电池单体处在不同的起跑线上。

图3记录了一组电池使用初期单体电池浮充电压的变化。

图3 一组蓄电池的电压变化

显然,单体电池浮充电压波动很大,高的超过了2.30V以上,低的在2.20V以下,这就为蓄电池的失效埋下了种子。

过高的浮充电压意味着对电池的过充,加速了正极板腐蚀并减少了电池寿命;这就会造成个别单体蓄电池长时间均浮充造成过量充电,其危害大致有正负极板有效物质的脱落、变形、增加电解液的损耗、干涸,过充电严重时易造成电池温度升高,自放电加速,外壳膨胀鼓包、变形等。

同样,过低的浮充电压意味着对电池的欠充,加速负极板腐蚀,也减少了电池寿命;并且同时会造成个别单体蓄电池充电不足,难以补充电池本身自放电,时间久了,即易形成极板硫酸化。

电池组中各单体电池电压会相互影响,产生更大的波动,加强了过充和欠充现象。

图4描述了充电电压与极板腐蚀速率的关系,显示了过高和过低的充电电压对极板腐蚀的影响。

图4 充电电压与腐蚀速度的关系

在对实际运行的蓄电池组浮充电压数据进行分析后,开关电源充电不足造成浮充电压的偏离现象是普遍存在的,特别是在网运行2~3年的蓄电池组。尽管理论和实践都证明,单体电池的浮充电压和电池容量没有相关性,但是浮充电压的离散度却和电池性能有相关性,通过放电测试验证了浮充电压长期偏离对容量的影响,尤其是浮充电压离散度更能表征对电池容量产生的影响。

图5中是兰州苦水移动基站一组蓄电池组中其中1#与7#电池的浮充电压与平均浮充电压的比较图,显然1#电池处于长期欠充电状态,7#电池处于长期过充电状态。

图5 两个电池的浮充电压对比

图6所示的放电数据xx证实了这一判断,1#电池由于长期处于欠充电状态,放电电 压明显低于平均电压,且在放电终止时回升缓慢,而7#电池由于处于长期过充电状态,放电电压也明显低于平均电压,但在放电终止时迅速跳跃回升,表现了内阻较大的作用。

图7 两个电池的放电对比

图7中是兰州师专基站的浮充电压数据,可以看到某几节电池浮充电压明显的偏离平均电压,有些蓄电池处于长期欠充状态,放电测试也同样验证了分析结果。

从以上分析和数据可以得出:

(1)开关电源充电参数会对阀控式铅酸蓄电池的浮充电压会对电池容量和寿命产生影响;

(2)由于电池制造工艺的非一致性,也由于蓄电池总是成组使用的,导致了实际使用中浮充电压离散性不可避免的存在。

当蓄电池由于多种原因导致亏电后,再使用恒压充电方式进行补充充电,因恒压充电方式固有的不足,蓄电池不能xx充足,极板表面硫化现象不能xxxx,蓄电池投入使用后,又容易再次发生亏电故障。如此不良循环的恶果就是,蓄电池极板表面硫化现象越来越严重,蓄电池的容量越来越小,蓄电池的技术状态越来越差。这是造成移动通信基站蓄电池提前报废的一个主要原因。

恒压充电法,我们看到开关电源的输出电压,始终是在开关电源设计者认为蓄电池安全受电的{zg}允许电压上,低于这个电压,将无法使蓄电池充满,这个电压是否真的安全?

充电过程中,如果单体蓄电池的充电电压比电池自身实时的电压高出100mV,通过蓄电池的充电电流要比蓄电池的{zd0}安全受电电流要增大10倍以上。而充电前蓄电池一般都是在放完电后,这时的蓄电池是处在{zd1}的电压上。如单体铅酸蓄电池,放电后一般为2.0V,而此时的充电电压如果是恒定在2.25~2.4V,可见充电器输出的电压和蓄电池电压的差已远远大于100mV。这样的恒压充电,通过蓄电池的充电电流将是蓄电池{zd0}安全电流的几十倍,如果开关电源的输出功率与容量足够大的话,必定会造成蓄电池的损坏,如果开关电源的容量不够,那就必定会造成开关电源的过载烧毁。经过改进后的恒压限流充电方式,为了能保障蓄电池和开关电源不致遭到损坏的厄运,却降低了充电效率,增加了损耗,延长了充电时间,虽然绝大多数的开关电源设有环境温度变化的跟踪补偿能力,但是开关电源此时还保存着{zd0}的电流输出能力。

我们知道,蓄电池较长时间亏电状态,极板极易产生硫化,而恒压充电方式又很难xx极板硫化现象,充电时较大的充电电流除用于xx极板硫化现象外,还会电解水,所以充电时蓄电池很快就产生了大量气泡,给人以蓄电池已充足电的假象。如果仔细观察就会发现,极板硫化的蓄电池充电时,很快就能产生大量气泡,而正常的蓄电池则是在充电终了时才会产生大量气泡。仅从气泡产生的时间就是不一样的,是有较大区别的。由于极板硫化,蓄电池的容量就会大大降低,直接影响蓄电池的正常使用。也就是说,使用恒压充电方式很难恢复蓄电池的额定容量。

理论和实践证明,蓄电池的充放电是一个复杂的电化学过程。一般地说,充电电流在充电过程中随时间呈指数规律下降,不可能自动按恒流或恒压充电。充电过程中影响充电的因素很多,诸如电解液的浓度、极板活性物的浓度、环境温度等的不同,都会使充电产生很大的差异。随着放电状态、使用和保存期的不同,即使是相同型号、相同容量的同类蓄电池的充电也大不一样。

但对于“用时间长了”的蓄电池,其失效原因各种各样。尤其是移动通信基站长期频繁停电或环境温度达不到蓄电池组的要求,这是目前电池正极板软化最严重的问题。并且失水是大量发生的严重的问题,维护的重要环节就是补加水。。事实上,所有的铅酸蓄电池,只要使用一段时间,其正极板的活性物质的结构和化学组成就已经改变了,也就是说,所有“用时间长了”的蓄电池,其正极板都或多或少存在着问题。如果采取同一种模式和方法进行蓄电池充电管理,是不可行也是xx不现实的。至此,我们可以看出,造成阀控式蓄电池使用中出现早期性能下降和损失容量的重要原因,大多是传统蓄电池充电技术落后与过程控制不力所致。

5 开关电源蓄电池参数设置的基本方法

由于阀控电池平时一直处于浮充电状态,所以只有三种可能,即正常浮充状态、过充状态、欠充状态。这一状态的判别,并不是简单的在某一时刻去测量单体电池浮充电压,而是应该通过一段时间的电压数据分析,如自身离散度的变化、相对整组离散度的变化等,再辅以内阻的变化,才能较为准确的获得浮充电状态。

5.1.对确认过充的电池,予以在线活化。

当电池处于长期过充电状态,将加速正极板的腐蚀,影响电池容量。过充的电池会在浮充电压中得到表现,并依据本文提及的分析方法得出判断,通过在线对过充电池适当调整浮充电压,可改善过充对电池造成的损害,并使电池恢复到正常浮充电状态。

5.2对确认欠充的电池,予以在线补充电。

长期充电不足或是在放电后没有及时xx充电,将导致负极板的硫酸盐化,使原本处于欠充的负极板PbSO4无法得到还原,并影响电池容量。欠充的电池会在浮充电压中得到表现,并依据本文提及的分析方法得出判断,及时予以在线补充电,改善可能出现的硫化现象,使电池恢复到正常浮充电状态。

5.3保持良好的浮充状态

决定电池寿命的要素主要有三个:{dy}是产品原始质量;第二是维护是否合理;第三是电池是否处于良好的浮充运行状态。

单体浮充电压是根据电池厂家要求设定的,阀控电池一般在2.23~2.27V 之间。单体浮充电压对阀控电池的寿命有着明显的影响,图8说明了这一影响的关系。

图8 浮充电压和寿命的关系

可以看出同样的温度下,浮充电压过低(2.21V)或过高(2.30V)对电池寿命都是不利的。

浮充运行是指整流器与蓄电池并联供电于负载,如图9所示。当交流电正常供应时,负载电流由交流电经整流后直接供电于负载,蓄电池处于微电流充电状态;当交流电停供时才由蓄电池单独供电于负载,故蓄电池经常处于充足状态,大大减少了充放电循环周期,延长了电池寿命。

图9 浮充原理图

5.4浮充电压的选择

蓄电池浮充电压的选择是对电池维护得好坏的关键。如果选择得太高,会使浮充电流太大,不仅增加能耗,对于密封电池来说,还会因剧烈分解出氢氧气体而使电池爆炸。如果选择太低,则会使电池经常充电不足而导致电池加速报废。

整流器稳压精度必须达到±1%;IC为蓄电池充电电流,主要是补充蓄电池的自放电;由于蓄电池处于浮充(充足)状态,E2和r02基本不变。对于开口型电池,因电解液由各使用单位自行配制,故充电开始有所差异。对阀控式密封铅酸蓄电池,出厂时已成为定值,为此:

式中,Q为蓄电池组的额定容量;r%为电池一昼夜自放电占额定容量的百分比,则:

由此可见,浮充电压应按电池的容量、自放电的多少而定,而不应千篇一律,照抄国外或沿用老资料,特别是阀控式密封铅酸蓄电池,其自放电很小,故可降低浮充电压。对于阀控式密封铅酸蓄电池,因电解液、隔离板均由厂家出厂时密封为定值,故应增加一个自放电的指标。

合理选择浮充电压。各种蓄电池浮充电压不尽相同,在理论上需要浮充电压产生的电流是以达到补偿自放电电量以及单放电电量,和维持氧循环需要。但在实际工作中还需根据电池组工作年限及各种情况来定,需考虑电池结构状态,正极极栅腐蚀速率,电池内气体的排放,通信设备在浮充系统基础电压的要求等。有些长时间电池放电后需长时间补充能量,则临时需调高浮充电压。对于如负载电流为40~50A,300AH 蓄电池放电时间只有2~4小时。浮充电压设置方法为24h自放电量及充放电效率,故需比平常提高浮充电压0.1~0.5V。

5.5均充电压的设定

5.5.1电池在使用过程中,有时会发生容量、端电压不一致的情况。为防止其发展为故障,电池要定期履行均衡充电。此外,电池单独向通信负荷供电在15min以上,也依均衡充电来补足电池的容量。一般均充电压比浮充电压高出0.05~0.07V/只,以限流定时来进行。

充电所需的时间,由蓄电池放电深度、限流值选择的大小、电池充电期间的温度以及充电设备的性能等因素决定。通常为 0.15~0.25C10A。但也有的为0.1 C10A和0.3C10A设置的。如温差较大,故常年温度在-20℃~35℃之间,室内一般在0℃~45℃之间变化。如空调没有在一直运行,需对均充电压定期调整,均充电压提高0.1~0.3v。充电时间一般以放出电量的1.2倍估算,IC20~30小时率充电时间一般以放出电量的1.6~1.8倍估算。

也有个别厂家不设均充电压,即只有浮充电压。当电池放电后需充电时,仍依浮充电压值充电,而设置{zd0}充电电流值为0.2~0.25C10A。

要注意对于均充电时间不宜过长,不然将使电池内盈余气体增多,影响氧再化合效率,而且使板栅腐蚀度增加,从而损坏电池。

5.5.2定时均充周期

一般为在线运行一年内并定期作容量试验可设置为60天,如发生个别电池经常充电不足的现象,即形成“落后电池”。因此,通常每个月对蓄电池组进行—次均充电,蓄电池经过xx性修复后要及时更改为正常值。否则后造成健康电池便陪随着落后电池过充电,使有效物质从极扳栅跌落,影响电池寿命、造成新的落后电池及电池容量下降。

5.5.3定时均充时间

一般为在线运行一年内并定期作容量试验蓄电池良好可设置为10~12小时,蓄电池组已出现落后电池可根据具体情况设在对均充电压调整后,仍可设定为6~12小时。

5.5.4转浮充参考电流

一般为在线运行一年内并定期作容量试验,蓄电池良好可设置为8~10A. 蓄电池组已出现落后电池的,可根据具体情况设在对均充浮充电压调整后,可设定为6~3A.

5.5.5衡压均充时间

一般为在线运行一年内并定期作容量试验蓄电池良好可设置为3小时,蓄电池组已出现落后电池可根据具体情况设在对均充浮充电压调整后,可设定为4~5小时。如遇到特殊情况可进行手动调整。

5.5.6转均充判断电池容量

蓄电池放电是极板膨胀过程,充电是极板缩小过程,也就是说,每经过—次充放电循环周期,构成正负极板的分子就要从静态经过一次膨胀和收缩的动态过程。不管蓄电池放出多少容量就均充都会造成焦耳热,严重会使蓄电池出现热失控。热失控将会使蓄电池迅速失水,隔膜内电解液很快干枯,并会使有效物质从极板栅掉下变成沉淀物,引起极板有效面积减少,容量降低,直至报废。

一般的设置方法可根据以往统计蓄电池放电情况灵活设定。在线运行一年内并定期作容量试验蓄电池良好可设置为70~85%。蓄电池组已出现落后电池可根据具体情况设在对均充浮充电压调整后,可设定为85~95%。

5.5.7转均充判断电池电压

根据在线蓄电池具体情况,对均充浮充电压调整可设定为48.75~47.8V。

5.5.8 转均充判断放电时间

根据在线蓄电池具体情况,对均充浮充电压调整后,充电时间可设定为0~3小时.

5.5.9蓄电池充电效率

根据在线蓄电池具体情况,对均充浮充电压及限流值调整后,运行1年以上的蓄电池组可设定为97~120%,运行2~4年以上的蓄电池组可设定为93~95%.

5.5.10蓄电池充电过流点

如果当高电压充电不限流时,电池内因过大充电电流使电极上活性物质小孔中电解液浓度急剧增加,而电解液的扩散速度此时不能满足浓差极化与电化学极化综合速度的要求必然产生很大的过电位的趋向,影响了充电深度。因此充电过流点应限制在0.25C10A以内。

5.5.11 蓄电池充电限流点

充电初始电流过大,对电池损害较大,当电池失水较多时往往热失控就发生在放电过后的充电过程中,因此,充电{zd0}电流应掌握到0.10~0.23C10A为好。充电电流以理论计算满足自放电补偿电量需要浮充电流以42mA/100AH。实际工作中还应考虑氧循环的需要及蓄电池放电次数,{zd0}充电电流不能大于20小时率充电电流的1.6倍及10小时率充电电流的1.2倍。

6 频繁停电地区充电方法

  6.1对充电限流值参数进行调整

  目前开关电源中对蓄电池充电限流值一般设定为0.1C10A,建议调整为0.15~0.2C10A(应根据季节做相应调整),但{zd0}充电电流不能超过0.25C10A,以缩短蓄电池充电时间,增加蓄电池充电前期充入的电量。

  6.2适当延长均衡充电时间

  根据该基站停电次数及时间,如果停电次数多且停电时间长,建议对开关电源中均衡充电时间判别参数(充电时间和充电电流 值判别)进行调整,延长均衡充电时间,可比原设定延长20%~30%;另外建议调整开关电源均衡充电时间周期设置,把原设置一般3个月时间周期调整为1个月或更短,对蓄电池进行均衡充电。

  6.3提高低电压保护设定值

  对基站组合开关电源内电池欠压保护设置电压值进行重新设定,提高蓄电池欠压保护的设置电压,尽量避免蓄电池出现过放电和深度过放电(小电流过放电),具体设置要求如下,开关电源一次下电设置电压要求不低于46V,二次下电设置电压必须要求大于44V, 建议设置在44.4V。对负载电流小于1/3 I10A的基站,其放电时间尽可能不大于24h,即行切断。具体可在开关电源内设置

  6.4对已经硫化电池要除硫化

  开始充电时,如果蓄电池充电电压偏高,说明蓄电池内阻过大。如果蓄电池充电电压偏低,说明蓄电池亏电。可对蓄电池充电2~3小时后,再对蓄电池充电电压进行检测,观察蓄电池充电电压的变化。如果蓄电池充电电压由高变低,说明蓄电池内阻已经减小,还能有继续使用的可能性,如果是蓄电池的充电电压依然居高不下,维持较高的充电电压,就说明蓄电池硫化严重,对硫化严重的电池要做除硫化维护。

  7 环境温度维护方法

  7.1电池温度和电池内阻的关系

  当电池温度升高时,电解液的活动加强,故电池内阻减少;当电池温度降低时,电解液的活动减弱,故电池内阻增大。大量试验数据表明,当温度较低时(25℃以下),电池内阻随温度变化显著;当温度较高时(25℃以上),电池内阻随温度变化缓慢。因此,如需要在标准温度下的电池内阻值,应对测得的电池内阻进行温度修正。

  工作于浮充方式的阀控铅酸蓄电池,温度升高时,由于内阻的减小,其浮充电流增大,导电元件的腐蚀加剧,因而寿命减少。另一方面,当温度很低时,上于内阻的增大,电池就不能对负载放出能量。所以,阀控铅酸蓄电池的温度监测和环境温度是十分必要的。还必须对充电电压进行温度补偿,以避免高温下的过充和低温下的欠充。.

  7.2蓄电池浮充电压与温度的关系

  蓄电池在投入使用后,首先要进行补充充电,即均充电。在25℃时电压值为2.35±0.02V,充电时间在16~20小时左右。如果不在标准温度时应修正其充电电压,只有在蓄电池充足电的情况下才能进行核对容量试验 ,即初次容量按95%核对,对于放电容量受温度影响的程度应依据公式:

  式中:

  t- 放电时的环境温度℃;

  K- 温度系数,10h率容量试验时K=0.006/℃

  3h率容量试验时K=0.003/℃

  1h率容量试验时K=0.01/℃

  Ce- 25℃时电池的标称容量值

  应注意的是,在浮充运行中,阀控电池的浮充电压与温度有密切的关系,浮充电压应根据环境温度的高低作适当修正。

  从上式明显看出,当温度低于25℃太多时,若阀控电池的浮充仍设定为2.27V,势必使阀控电池充电不足。同样,若温度高于25℃太多时,若阀控电池的浮充电压仍设定为2.27V,势必使阀控电池过充电。

  在浅度放电的情况下,阀控电池在25℃下以2.27V运行一段时间是能够补充足其能量的。在深度放电的情况下,阀控电池充电电压可设定为2.35~2.40V/C(25℃),限流点设定为0.1c。过一定时间的补充容量后,再转入正常的浮充运行。

  应当说明的是,由于电池极板活性物质从表面到内部进行充分的化学反应时需要一定的时间,因此建议两次充放电时间间隔应大于10天。充电时间越长则放电深度相对要深一些。

  定期修正电池系统的浮充电压值

  

环境温度℃ 单体电池电压V 总电压V
35 2.21 53.04
30 2.23 53.52
25 2.25 54
20 2.26 54.24
15 2.28 54.72
10 2.30 55.2
5 2.32 55.68

  由于电池系统浮充电压值受温度影响较大,因此应根据电池系统使用中环境温度变化而及时修正系统的充电电压值,一般每年可设定调整2~4次。

  监控中心或OMC一旦接到基站停电告警后,应密切注意该基站运行情况, 一旦出现无线信号中断超过6h,应及时通知基站 维护人员携带发电机组赶赴现场进行发电,确保蓄电池因放电终止后能进行及时充电,延长蓄电池使用寿命。

  利用监控系统可早期发现电池故障,对一些不能按要求自动检测电池的放电情况对电池进行均浮充转换的开关电源,应按要求在监控中心进行远端手动遥控开关整流电源对电池均充。在市电恢复正常后开关整流电源不能对电池进行均充,维护人员要根据电池放出实际容量的情况, 在远端通过动力环境监控系统及时调整开关电源设备对电池的充电电流及均浮充转换,在监控中心进行远端手动遥控开关整流电源对电池均充。所以只有电池工作在荷满的浮充运行状态下,蓄电池组容量准确具备了必要条件,也使蓄电池组实际使用的环境接近设计寿命的环境,使放电时间得以延长。

  8 日常蓄电池维护的工作

  蓄电池维护的实际工作有:

  8.1每月停电1~2次,基站放电时间平均为4~5小时。需进行手动均充,人工补充蓄电池的容量,浮充电压必需提高到54v以上。

  8.2蓄电池损坏的一个主要原因是油机发电造成的。每次油机发电完成后应进行手动均充,防止蓄电池充电不足而造成损坏。

  8.3频繁停电发电造成了蓄电池严重的充电不足,其结果是油机发电越发越亏,越亏越发,{zh1}不得不发地步。因此在发电过程中在保证传输供电的同时,两组蓄电池一组必须脱离负载,这是因为依靠油机对蓄电池充电是xx不可能把电充足的。

  8.4蓄电池厂家提供的浮充电压值,不能应用于基站的蓄电池充电设定,要根据实际的情况进行设定,浮充总电压值应提高到54.2v-54.5v。

  8.5每月停电频繁基站,应相应提高浮充电压及限流值.例如把浮充电压为53.5V调整到54.2~54.6V,限流值0.1C调整为0.15~0.18C。

  8.6对开关电源蓄电池各项维护参数的设定,不能xx按照蓄电池厂家要求进行设定,可根据蓄电池实际运行情况做灵活调整。

  8.7蓄电池初期出现容量亏损,例如蓄电池200Ah负载电流20A,放电时间由10小时下降为5小时。处理方法是提高浮充电压和限流值,用较大电流对硫化的极板活化。

  8.8蓄电池亏损严重.例如蓄电池200Ah负载电流20A放电时间由10小时下降为2小时,处理方法必需用高频脉冲充电仪进行整组处理。

  9 应用实例

  图10为某移动通信基站蓄电池组浮充电压运行数据,图中是整组蓄电池在此运行时间段里浮充电压的组离散度,其中A时刻对整组蓄电池组进行了维护,可以直观地看出,在线维护后,整组电池浮充电压的离散性变小,其一致性明显变好。

图10 维护前后蓄电池组电压的离散度

  在图11中,看到有两节蓄电池的浮充电压明显偏高,且在此运行阶段,波动较大,图11中是其中一节20#蓄电池的浮充电压离散度表现,其中B 时刻对该电池进行充放电维护,从图11上看,20#电池的浮充电压离散性在进行维护后明显变好,且离散度本身的变化波动也明显变小。本节电池的浮充电压由维护前的2.303V拉回到2.256V正常浮充状态。

图11 20号电源维护前后的电压变化

  10 结论

  甘肃移动兰州分公司自2002年开始该项工作的实验,对基站的电源参数进行了合理化调整,对蓄电池进行前期的在线修复,并取得了良好的结果 。经过一阶段的在线参数调整和修复,电池由原来放电1小时延长至现在的3~4小时。经过上述蓄电池在线或者线下调整和修复的实例证明维护的可行性和有效性。运用上述开关电源充电参数调整技术,先后对十个郊县基站200AH蓄电组进行在线修复与维护。经多次市电停电测试,在负载电流20~30A左右时,电池组平均放电时间7~9个小时,蓄电池容量恢复到80%,基本满足电池放电要求。在2007年对上述10个基站进行10小时容量测试,除3个基站蓄电池容量不足20%以外,其余基站容量保持在50%左右,平均放电时长5小时,蓄电池使用寿命平均延长了3~4年。




郑重声明:资讯 【高频开关通信电源对蓄电池的影响_TelecomPower_百度空间】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——