元素周期律_田中林野的空间_百度空间
 的物理、性质随原子序数逐渐变化的规律叫做元素周期律。元素周期律由门捷列夫首先发现,并根据此规律创制了元素周期表。   结合元素周期表,元素周期律可以表述为:   随着的增加,元素的性质呈周期性的递变规律: 在同一周期中,元素的从左到右递减,非金属性从左到右递增, 在同一族中,元素的金属性从上到下递增,非金属性从上到下递减; 同一周期中,元素的{zg}正氧化数从左到右递增(没有正价的除外),{zd1}负氧化数从左到右逐渐增高; 同一族的元素性质相近。 主族元素同一周期中,随着原子序数的增加而减小。 同一族中,原子半径随着原子序数的增加而增大。如果粒子的相同,则阴离子的半径比阳离子大,且半径随着电荷数的增加而减小。(如O2->F->Na+>Mg2+)   19世纪60年代,化学家已经发现了60多种元素,并积累了这些元素的数据,为寻找元素间的内在联系创造必要的条件.俄国xx化学家和德国化学家等分别根据原子量的大小,将元素进行分类排队,发现元素性质随原子量的递增呈明显的周期变化的规律.1868年,门捷列夫经过多年的艰苦探索,发现了自然界中一个极其重要的规律—元素周期规律.这个规律的发现是继之后,近代上的又一座光彩夺目的里程碑,它所蕴藏的丰富和深刻的内涵,对以后整个化学和自然科学的发展都具有普遍的知道意义.1869年,门捷列夫提出{dy}张元素周期表,根据周期律修正了、、、等9种元素的原子量;他还预言了三种新元素及其特性,并暂时取名为、类硼、类硅,这就是1871年发现的、1880年发现的和1886年发现的.这些新元素的原子量、密度和物理化学性质都与门捷列夫的预言惊人相符,周期律的正确性由此得到了举世公认.   结合,元素周期律可以表述为:元素的性质 随着原子序数的递增而呈周期性的递变规律。   元素的周期性决定了元素性质的周期性。

原子半径

  同一周期(稀有气体除外),从左到右,随着原子序数的递增,元素原子的半径递减;   同一族中,从上到下,随着原子序数的递增,元素原子半径递增。   (注):阴阳离子的半径大小辨别规律   由于阴离子是电子最外层得到了电子 而阳离子是失去了电子   所以, 总的说来(同种元素)   (1) 阳离子半径<原子半径   (2) 阴离子半径>原子半径   (3) 阴离子半径>阳离子半径   (4)或者一句话总结,对于具有相同核外电子排布的离子,原子序数越大,其离子半径越小。(不适合用于稀有气体)

主要化合价({zg}正化合价和{zd1}负化合价)

  同一周期中,从左到右,随着原子序数的递增,元素的{zg}正化合价递增(从+1价到+7价),{dy}周期除外,第二周期的O、F元素除外;   {zd1}负化合价递增(从-4价到-1价){dy}周期除外,由于金属元素一般无负化合价,故从ⅣA族开始。   元素{zg}价的{jd1}值与{zd1}价的{jd1}值的和为8

元素的金属性和非金属性

  同一周期中,从左到右,随着原子序数的递增,元素的金属性递减,递增;   同一族中,从上到下,随着原子序数的递增,元素的金属性递增,非金属性递减;

单质及简单离子的氧化性与还原性

  同一周期中,从左到右,随着原子序数的递增,单质的氧化性增强,还原性减弱;所对应的简单阴离子的还原性减弱,简单阳离子的氧化性增强。   同一族中,从上到下,随着原子序数的递增,单质的氧化性减弱,还原性增强;所对应的简单阴离子的还原性增强,简单阳离子的氧化性减弱。   元素的越强,金属性就越强;单质越强,非金属性就越强。

{zg}价氧化物所对应的水化物的酸碱性

  同一周期中,从左到右,元素{zg}价氧化物所对应的水化物的酸性增强(碱性减弱);   同一族中,从上到下,元素{zg}价氧化物所对应的水化物的碱性增强(酸性减弱)。

单质与氢气化合的难易程度

  同一周期中,从左到右,随着原子序数的递增,单质与氢气化合越容易;   同一族中,从上到下,随着原子序数的递增,单质与氢气化合越难。

气态氢化物的稳定性

  同一周期中,从左到右,随着原子序数的递增,元素气态氢化物的稳定性增强;   同一族中,从上到下,随着原子序数的递增,元素气态氢化物的稳定性减弱。   此外还有一些对元素金属性、非金属性的判断依据,可以作为元素周期律的补充:   随着从左到右价层轨道由空到满的逐渐变化,元素也由主要显金属性向主要显非金属性逐渐变化。   随同一族元素中,由于周期越高,价电子的能量就越高,就越容易失去,因此排在下面的元素一般比上面的元素更具有金属性。   元素的{zg}价氢氧化物的越强,元素金属性就越强;{zg}价氢氧化物的越强,元素非金属性就越强。   元素的气态越稳定,非金属性越强。   同一族的元素性质相近。   具有同样价电子构型的原子,理论上得或失电子的趋势是相同的,这就是同一族元素性质相近的原因。   以上规律不适用于。   还有一些根据元素周期律得出的结论:   元素的金属性越强,其{dy}电离能就越小;非金属性越强,其{dy}电子亲和能就越大。   同一周期元素中,轨道越“空”的元素越容易失去电子,轨道越“满”的越容易得电子。   元素周期律[1]是自然科学的基本规律,也是的基础。各种元素形成有周期性规律的体系,成为元素周期系,元素周期表则是元素周期系的表现形式。   元素周期表是学习和研究化学的一种重要工具.元素周期表是元素周期律的具体表现形式,它反映了元素之间的内在联系,是对元素的一种很好的自然分类.我们可以利用元素的性质、它在周期表中的位置和它的三者之间的密切关系来指导我们对化学的学习研究。   过去,门捷列夫曾用元素周期律来预言未知元素并获得了证实。此后,人们在元素周期律和周期表的指导下,对元素的性质进行了系统的研究,对物质结构理论的发展起了一定的推动作用。不仅如此,元素周期律和周期表为新元素的发现及预测它们的原子结构和性质提供了线索。   元素周期律和周期表对于工农业生产也有一定的指导作用。由于在周期表中位置靠近的元素性质相近,这样就启发了人们在周期表中一定的区域内寻找新的物质。   元素周期律的重要意义,还在于它从自然科学方面有利地论证了事物变化中量变引起质变的规律性。   元素周期律和周期表,揭示了元素之间的内在联系,反映了元素性质与它的原子结构的关系,在哲学、自然科学、生产实践各方面,都有重要意义。   (1)在哲学方面,元素周期律揭示了元素原子递增引起元素性质发生周期性变化的事实,从自然科学上有力地论证了事物变化的量变引起质变的规律性。元素周期 表是周期律的具体表现形式,它把元素纳入一个系统内,反映了元素间的内在联系,打破了曾经认为元素是互相孤立的形而上学观点。通过元素周期律和周期表的学 习,可以加深对物质世界对立统一规律的认识。   (2)在 自然科学方面,周期表为发展物质结构理论提供了客观依据。原子的结构与元素周期表有密切关系,周期表为发展过渡元素结构,镧系和锕系结构理论,甚至 为指导新元素的合成,预测新元素的结构和性质都提供了线索。元素周期律和周期表在自然科学的许多部门,首先是化学、物理学、生物学、等方面,都是 重要的工具。   (3)在生产上的某些应用   由于在周期表中位置靠近的元素性质相似,这就启发人们在周期表中一定的区域内寻找新的物质。   农药多数是含Cl、P、S、N、As等元素的化合物。   半导体材料都是周期表里金属与非金属接界处的元素,如Ge、Si、Ga、Se等。   催化剂的选择:人们在长期的生产实践中,已发现过渡元素对许多化学反应有良好的催化性能。进一步研究发现,这些元素的催化性能跟它们的原子的d轨道没有充满有密切关系。于是,人们努力在过渡元素(包括)中寻找各种优良催化剂。例如,目前人们已能用铁、镍熔剂作催化剂,使石墨在高温和高压下转化为金刚石;石油化工方面,如石油的催化裂化、重整等反应,广泛采用过渡元素作催化剂,特别近年来发现少量稀土元素能大大改善催化剂的性能。   耐高温、耐腐蚀的特种合金材料的制取:在周期表里从ⅢB到ⅥB的过渡元素,如钛、钽、钼、钨、铬,具有耐高温、耐腐蚀等特点。它们是制作特种合金的优良材料,是制造火箭、导弹、宇宙飞船、飞机、坦克等的不可缺少的金属。   矿物 的寻找:地球上化学元素的分布跟它们在元素周期表里的位置有密切的联系。科学实验发现如下规律:原子量较小的元素在地壳中含量较多,原子量较大的元素在地 壳中含量较少;偶数原子序的元素较多,奇数原子序的元素较少。处于地球表面的元素多数呈现高价,处于岩石深处的元素多数呈现低价;一般是强烈的亲石 元素,主要富集于岩石圈的最上部;熔点、离子半径、电负性大小相近的元素往往共生在一起,同处于一种矿石中。在岩浆演化过程中,电负性小的、离子半径较小 的、熔点较高的元素和化合物往往首先析出,进入晶格,分布在地壳的外表面。   有的科学家把周期表中性质相似的元素分为十个区域,并认为同一区域的元素往往是伴生矿,这对探矿具有指导意义。   1829年,德国J.W.德贝赖纳在研究元素的原子量与化学性质的关系时,发现有几个相似的元素组:①锂、钠、钾。②钙、锶、钡。③氯、溴、碘。④硫、硒、碲。⑤锰、铬、铁。同组元素的性质相似,中间元素的化学性质介于前后两个元素之间,它的原子量也差不多是前后两个元素的平均值。1862年,法国B.de尚古多提出元素性质有周期性重复出现的规律,他创造了一种螺旋图,将62个元素按原子量大小循序标记在绕着圆柱体上升的螺线上,可以清楚地看出某些性质相近的元素都出现在同一条母线上。1864年,英国W.奥德林发表了一张比较详细的周期表,表中的元素基本上按原子量递增的顺序排列,体现了元素性质随原子量递增会出现周期性的变化。他还在表中留下空位,认识到它们是尚未被发现但性质与同一横列元素相似的元素。1865年,英国J.A.R.纽兰兹把当时已发现的元素按原子量大小顺序排列,发现从任意一个元素算起,每到第八个元素,就和{dy}个元素的性质相似,他把这个规律称为。对元素周期律的发展贡献{zd0}的当推俄国D.I.门捷列夫和德国J.L.迈尔。门捷列夫曾经收集了许多元素性质的数据,并加以整理,在这一过程中,他紧紧抓住元素的基本特征——原子量,探索原子量与元素性质的关系。他发现,如果把所有当时已知的元素按照原子量递增的顺序排列起来,经过一定的间隔,元素的性质会呈现明显的周期性。1869年,他发表了{dy}张元素周期表,同年3月,他委托N.A.缅舒特金在俄罗斯化学会上宣读了论文“元素属性和原子量的关系”,阐述了周期律的基本要点:   将元素按照原子量大小顺序排列起来,在性质上呈现明显的周期性。   原子量的大小决定元素的特性。   应该预料到许多未知元素的被发现。   当知道了某元素的同类元素后,有时可以修正该元素的原子量。   在这张周期表中,有4个位置只标出原子,在应该写的地方却打了一个问号。这是因为门捷列夫在设计周期表时,当他按原子量递增的顺序将元素排列到钙(原子量为40)时,在当时已知的元素中,原子量比40大的元素是钛(原子量为50),这样,钙后面的一个元素似乎是钛。但是,门捷列夫发现,如果照这样的次序排列,钛就和铝属于同一族,实际上钛的性质并不与铝相似,而与铝的后面一个元素硅相似,因此他断定钛应该与硅属于同一族,在钙与钛之间应该存在着一个元素,虽然这个元素尚未被发现,但应该为它留出空位。根据同样理由,他认为在锌与砷、钡与钽之间也应留下空位,因此他预言了原子量为45、68、70的3种未知元素的性质,并命名为类硼、类铝、类硅。后来,这3种元素先后被发现,1875年P.-E.L.de布瓦博德朗发现的镓即类铝,1879年L.F.尼尔松发现的钪即类硼,1886年C.温克勒尔发现的锗即类硅。这3种新发现的元素的性质与门捷列夫的预言很吻合, 证明了周期律的正确性。1870年迈尔发表了一张元素周期表,指出元素的性质是原子量的函数,他所依据的事实偏重元素的物理性质。他对于族的划分也比门捷列夫的周期表更加完善,例如将汞与镉、铅与锡、硼与铝列为同族元素。   元素呈现种种物理性质上的周期性,例如随着元素原子序数的递增,原子体积呈现明显的周期性,在化学性质方面,元素的化合价、电负性、金属和非金属的活泼性,氧化物和氢氧化物酸碱性的变迁,金属性和非金属性的变迁也都具有明显的周期规律。在同一周期中,这些性质都发生逐渐的变化,到了下一周期,又重复上一周期同族元素的性质。   周期律在使化学知识特别是无机化学知识的系统化上起了重要作用,对于研究无机化合物的分类、性质、结构及其反应方面起了指导作用。周期律在指导原子核的研究上也有深刻的影响,放射性的位移定律就是以周期律为依据的,原子核的种种人工蜕变也都是按照元素在周期表中的位置来实现的。20世纪以后,新元素的不断发现,填充了周期表中的空位,科学家在周期律指导下,还合成了,并发展了锕系理论。在原子结构的研究上,也获得了壳层结构的周期规律。   【符号】   m X 的符号中,X表示某元素符号,a为元素名称,m为该元素的原子序数,n为该元素原子的相对原子质量,如:1 H   a 氢   n 1.008


郑重声明:资讯 【元素周期律_田中林野的空间_百度空间】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——