1 引言 谐波电流的估算有时是很困难的,因为影响谐波电流大小的因素很多,例如有功负荷的大小,变流器的类别和控制要求等等,而某些情况,甚至无法估算,例如电弧炉、弧焊机等,这就只有等待设备运行后的谐波测量。但从下面的分析中可以看出变流器发射的谐波电流还是有一定的规律的。如果变电所的负荷中,变流设备占了一定的比重,估算出谐波骚扰量和系统阻抗,就可以考虑谐波治理的予案;又如民用建筑中,单相负荷电流若包含有零序谐波成分(3次及3的倍数次谐波),可能对中性及开关的第4级带来麻烦。总之,估算可能并不准确,但它是治理谐波的基础。 2 谐波源分类[1] 2.1 工厂设备的低频骚扰概述 在讨论谐波源之前,先简述低频传导骚扰源见表1。 2.2 谐波源分类 (1) 半导体变流器 半导体器件是可控的,例如晶闸管(SCR),也可以是不可控,例如二级管,这些变流器又可分为三类,它们有各自单独的谐波发射规律。 3 变流器谐波发射量的计算 直流整流装置已有较长的应用历史,电冶金电化学用大功率整流装置屡见不鲜,因此电流源谐波量的计算技术应该比较成熟。移相调压交流控制器电路及其原理相对较简单,谐波量的计算也较容易。但采用大电容在直流侧滤波的整流装置由于采用PWM技术的变频调速大量应用致使其用电容量的比重逐步增加,电压源谐波的计算才受到了重视,同时在商、住、办公楼的建筑中也有数量很多(虽然单台功率很小)的电压型谐波源,而且是单相交流220V,它带来了不少新问题。总之,电压型谐波量的计算在国内发表的论文,笔者知之甚少。它需要复杂的理论分析和试验验证,可能就是难点所在。 3.1 移相调压型交流控制器 (1) 单相 由表2可直接查得交流输入侧谐波电流相对值 (2) 三相 如果负载电压是220V且不平衡,那么,中性线上就会流过基波的三相不平衡电流和三相的3次的和3的倍数次谐波电流之和,而ABC各相的线电流和单相时是一样的规律。 3.2 电流型谐波源(直流用大电感滤波) 如前所述,谐波电流计算已有一段历史,故简要介绍如下:(一般只涉及到三相电路) 下面一些因素,会使谐波电流偏离1/h规律: (1) 移相角控制增加时,谐波电流略有增加; 3.3 电压型谐波源 常见之于通用PWM变频器调速装置,其前端为三相桥式整流带大电容滤波,其谐波电流相对值如表3[1]。 4 其它谐波源简介 (1) 电弧炉 谐波电流的大小与许多因素例如运行方式,炉料种类,炉内温度、电极的情况有关,谐波的大小变化无规律。 (2) 气体放电灯和交流直接供电的荧光灯 文献[4]《工程设计中气体放电光源谐波估算方法的研究》是在谐波测试的基础上的研究结论。遗憾的是所见资料不全,因为气体放电灯还有其它的品种规格,也未包括荧光灯。据测试结果,高压汞钠灯三次谐波约为总电流的14%左右,而5次7次分量小,只有2%左右,不知此数据能否适用其它光源,也不清楚国内是否还有学者在测定光源本身的谐波发射量。 (3) 微机、电视机和通过电子装置供电的荧光灯 其特点为二极管整流桥(用大电容滤波)接在单相220V电源上,也是电压压型谐波源,奇数次谐波从3次到5次的谐波含量均很大,其中3次与5次可达到基波的 90%左右,随着负载RC乘积的增大而增加,R为输出侧的等值电阻,C为滤波电容。文献[2]有详细分析与曲线可参考,未见IEC提供有关信息。本文在{zh1}一节中将会介绍。 (4) 有铁心绕组的接通(饱和电抗) 例如变压器、电动机的投入,会产生谐波,但这是短时的,正常工作时,工作在邻近磁化曲线线性区,谐波成份很小,总之,谐波所占比例很小。 (5) 电容器组的接通 投入电容器会引发谐振,为避免持久的谐振,通常总是将电容串联电感。 5 谐波量的合成 谐波量的合成是在各个用电设备谐波发射量的基础上,按不同的谐波次数将它们按各次谐波分别合成起来,严格的办法应该是按矢量相加,但必须知道各次谐波的相角(可用基波作基准点)而这是即使有可能也是极其麻烦的,特别是谐波源有很多个时,最简单的办法是代数相加,但结果偏大,过于保守,IEC标准[5]介绍2条合成定律,两条定律都常用,第1条较简单,适用于谐波电压,第2条更通用,谐波电压或电流都适用。 (1) 商、住、办公楼的难题 这是因为缺乏单个用电设备各谐波次数的发射水平,缺乏它们的使用规律,别说谐波电流,就是基波电流也难以估算准确,而工业设备明显不同,用电设备数量是可数的,用电规律也是可予期的,因而估算各次谐波应有可能性。 (2) 中性线谐波电流的合成。 它由两部分组成:{dy}部分为三相的3次及3的倍数奇数次谐波的合成,通常计及3次9次即可;第二部分为三相的5次、7次、11次等非3的倍数的奇数次谐波的合成。 7 谐波阻抗的计算 按IEC标准[5]的介绍,谐波阻抗的计算是很复杂的,现已有几个测量计算方法,但没有一个是xx满意的,即使有{zh0}的计算机软件和网络分析仪,虽然它可能对缺乏可靠的数据进行补偿。此外,网络的谐波阻抗随时间变化,可能有显著的变化。谐波阻抗Zh=h×X1(谐波次数×基波电抗)似乎是顺理成章的,但这是有严格限制条件的,即没有大的并联补偿电容和没有大的电缆网络,13次及以下谐波源不可能发生谐振。若想按上式推算并希望通常有优于20%的准确度,则对电力(中、高压)系统的阻抗有某些定量要求;如果电力系统中有单一的或多重的并联谐振回路,则另有计算方法,详见文献[5]的介绍。 8 特殊问题—中性线(N)上谐波 N线上的谐波主要成分是3次,它是三相3次谐波的合成,如果谐波成分大了,将使N线导体包括变压器的内部母线,接头过热,因此要分析下面一系列问题:如何估算N线电流,如何选择N线截面,要选用K系数变压器吗? 8.1 如何估算N线电流(IN) N线电流包括基波电流与谐波电流,用N线又分N母线与分支N线,谐波电流源又分三种类型,先从简单问题开始: (1) 基波电流 这是三相负荷不平衡的结果,通常对母线而言不超过变压器额定电流的10%,否则对Yyn绕组接线而言,将有相电压的严重不对称,见文献[8],对Dyn接线变压,虽不受限制,但由于设计对负荷的均衡分配,估计也不易超过10%。对N分支干线而言,很有可能超过相线电流的10%,要具体工程具体分析,特别是工业中有较大功率的单相设备时;商、住、办公楼则要看支干N线哪一级的N线。 (2) 中线电流(I) 中线电流包括不平衡的基波电流,3次和 9次谐波电流则是各相之代数和,对5次谐波分析如下:A、B、C三相,对基波A-B相位差120°。对5次则差600°,相差600°即差240°;同理 A-C相差240°同,对5次则差1200°,差1200°即差120°。再看7次,基波差120°,7次则差840°即差120°,基波差240°,7 次即差1680°就是240°。因此在下面的分析计算中,中性只增加了3次、9次等3的倍数的谐波。 |