搜寻投资机会,把握主题投资机会,稀土的全面功用和保护价值- lltg ...
搜寻投资机会,把握主题投资机会,稀土的全面功用和保护价值 [转贴 2010-06-08 22:19:23]   
如何对付疯狂的石头?铁矿石在涨价{bfb}时,又迫不及待的加税40%,狗屁专家们或利益媒体随声附和“合理”、“不违反世贸原则”、“可接受”、“涨价比较温和”、“合法的”等等;为什么在中国钢企亏损和世界经济不景气的时候,外国人要如此对待我们????面对此种情况,作为主权国家,如果不保卫自己利益,如何生存???我们刚刚只是减少稀土出口,他们又整齐一致的叫嚣“不合理”、“违反世贸原则”等等,真他妈奇怪。我们如果不反击,如何称得上是主权国家????经济主权不能保障,难道我们要虚假的????所以,首先必须将稀土资源宣布收归国有,整合统一资源,按照拍卖价格,限量发售出口,尤其是要交换高科技技术,而不是去交换印刷的纸币。稀土的保护和发展必须上升到中华民族的生死存亡的战略高度来管制。必须以疯狂的稀土对付疯狂的石头。

在海湾战争中,加入稀土元素镧的夜视仪成为美军坦克压倒性优势的来源

1、镧(La)

“镧”这个元素是1839有个叫“莫桑德”的瑞典人发现这种元素取名为“镧”。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。镧也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与“超级钙”的美称。

铈可作催化剂、电弧电极、特种玻璃等。铈的合金耐高热,用来制造喷气推进器零件

2、铈(Ce) 

“铈”这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。铈的广泛应用:

(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨。

(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。

(3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前{lx1}的是法国罗纳普朗克公司。

(4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。

3、镨(Pr)

大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,将其定名为“镨钕”。 1885年,奥地利人韦尔斯巴赫成功地从“镨钕”中分离出了两个元素,一个取名为“钕”,另一个则命名为“镨”。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。

镨的广泛应用:

(1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。

(2)用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马达上。

(3)用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。我国70年xx始投入工业使用,用量不断增大。

(4)镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。

为什么M1坦克能做到先敌发现?因为该坦克装备的掺钕钇铝石榴石的激光测距机,在晴朗的白天可以达到近4000米的观瞄距离。

4、钕(Nd)

伴随着镨元素的诞生,钕元素也应运而生,钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。

钕元素凭借其在稀土领域中的独特地位,多年来成为市场xx的热点。金属钕的{zd0}用户是钕铁硼永磁材料。钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。钕铁硼磁体磁能积高,被称作当代“永磁{zw}”,以其优异的性能广泛用于电子、机械等行业。阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界{yl}水平。钕还应用于有色金属材料。在镁或铝合金中添加1.5~2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或xx创伤口。钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。 

5、钷(Pm)

1947年,马林斯基(J.A.Marinsky)、格伦丹宁(L.E.Glendenin)和科里尔(C.E.Coryell)从原子能反应堆用过的铀燃料中成功地分离出61号元素,用希腊神话中的神名普罗米修斯(Prometheus)命名为钷(Promethium)。钷为核反应堆生产的人造放射性元素。 

钷的主要用途有:

(1)可作热源。为真空探测和人造卫星提供辅助能量。

(2)Pm147放出能量低的β射线,用于制造钷电池。作为导弹制导仪器及钟表的电源。此种电池体积小,能连续使用数年之久。此外,钷还用于便携式X-射线仪、制备荧光粉、度量厚度以及航标灯中。

 “爱国者”导弹的防空导弹能力,也来自于制导系统中大约4公斤的钐钴磁体和钕铁硼磁体用于电子束聚焦。下图为钐钴磁体元件。

6、钐(Sm)

1879年,波依斯包德莱从铌钇矿得到的“镨钕”中发现了新的稀土元素,并根据这种矿石的名称命名为钐。

钐呈浅黄色,是做钐钴系永磁体的原料,钐钴磁体是最早得到工业应用的稀土磁体。这种永磁体有SmCo5系和Sm2Co17系两类。70年代前期发明了SmCo5系,后期发明了Sm2Co17系。现在是以后者的需求为主。钐钴磁体所用的氧化钐的纯度不需太高,从成本方面考虑,主要使用95%左右的产品。此外,氧化钐还用于陶瓷电容器和催化剂方面。另外,钐还具有核性质,可用作原子能反应堆的结构材料

7、铕(Eu)

1901年,德马凯(Eugene-Antole Demarcay)从“钐”中发现了新元素,取名为铕(Europium)。这大概是根据欧洲(Europe)一词命名的。氧化铕大部分用于荧光粉。Eu3+用于红色荧光粉的xx剂,Eu2+用于蓝色荧光粉。现在Y2O2S:Eu3+是发光效率、涂敷稳定性、回收成本等{zh0}的荧光粉。再加上对提高发光效率和对比度等技术的改进,故正在被广泛应用。近年氧化铕还用于新型X射线医疗诊断系统的受激发射荧光粉。氧化铕还可用于制造有色镜片和光学滤光片,用于磁泡贮存器件,在原子反应堆的控制材料、屏敝材料和结构材料中也能一展身手。

钆及其同位素都是xxx的中子吸收剂,可用于核反应堆的抑制剂。

8、钆(Gd)

1880年,瑞士的马里格纳克(G。de Marignac)将“钐”分离成两个元素,其中一个由索里特证实是钐元素,另一个元素得到波依斯包德莱的研究确认,1886年,马里格纳克为了纪念钇元素的发现者 研究稀土的先驱荷兰化学家加多林(Gado Linium),将这个新元素命名为钆。钆在现代技革新中将起重要作用。它的主要用途有:

(1)其水溶性顺磁络合物在医疗上可提高人体的核磁共振(NMR)成像信号。

(2)其硫氧化物可用作特殊亮度的示波管和x射线荧光屏的基质栅网。

(3)在钆镓石榴石中的钆对于磁泡记忆存储器是理想的单基片。

(4)在无Camot循环限制时,可用作固态磁致冷介质。

(5)用作控制核电站的连锁反应级别的抑制剂,以保证核反应的安全。

(6)用作钐钴磁体的添加剂,以保证性能不随温度而变化

9、铽(Tb)

1843年瑞典的莫桑德(Karl G。Mosander)发现铽元素(Terbium)。铽的应用大多涉及高技术领域,是技术密集、知识密集型的{jd0}项目,又是具有显著经济效益的项目。

主要应用领域有:

(1)荧光粉用于三基色荧光粉中的绿粉的xx剂,如铽xx的磷酸盐基质、铽xx的硅酸盐基质、铽xx的铈镁铝酸盐基质,在激发状态下均发出绿色光。

(2)磁光贮存材料,近年来铽系磁光材料已达到大量生产的规模,用Tb-Fe非晶态薄膜研制的磁光光盘,作计算机存储元件,存储能力提高10~15倍。

(3)磁光玻璃,含铽的法拉第旋光玻璃是制造在激光技术中广泛应用的旋转器、隔离器和环形器的关键材料。铽镝铁开始主要用于声纳,目前已广 泛应用于多种领域,从燃料喷射系统、液体阀门控制、微定位到机械致动器、机构和飞机太空望远镜的调节 机翼调节器等领域。

 

10、镝(Dy)

1886年,法国人波依斯包德莱成功地将钬分离成两个元素,一个仍称为钬,而另一个根据从钬中“难以得到”的意思取名为镝(dysprosium)。镝的最主要用途是:作为钕铁硼系永磁体的添加剂使用, (2)镝用作荧光粉xx剂,三价镝是一种有前途的单发光中心三基色发光材料的xx离子, (3)镝是制备大磁致伸缩合金铽镝铁(Terfenol)合金的必要的金属原料,能使一些机械运动的精密活动得以实现。(4)镝金属可用做磁光存贮材料,具有较高的记录速度和读数敏感度。(5)用于镝灯的制备,在镝灯中采用的工作物质是碘化镝,这种灯具有亮度大、颜色好、色温高、体积小、电弧稳定等优点,已用于电影、印刷等照明光源。(6)由于镝元素具有中子俘获截面积大的特性,在原子能工业中用来测定中子能谱或做中子吸收剂。(7)Dy3Al5O12还可用作磁致冷用磁性工作物质。随着科学技术的发展,镝的应用领域将会不断的拓展和延伸。

11、钬(Ho)

1879年,瑞典人克利夫发现了钬元素并以瑞典首都斯德哥尔摩地名命名为钬(holmium)。钬的应用领域目前还有待于进一步开发,用量不是很大,最近,包钢稀土研究院采用高温高真空蒸馏提纯技术,研制出非稀土杂质含量很低的高纯金属钬Ho/ΣRE>99.9%。目前钬的主要用途有:1、掺钬的钇铝石榴石(Ho:YAG)可发射2μm激光,人体组织对2μm激光吸收率高,几乎比Hd:YAG高3个数量级。所以用Ho:YAG激光器进行医疗手术时,不但可以提高手术效率和精度,而且可使热损伤区域减至更小。钬晶体产生的自由光束可xx脂肪而不会产生过大的热量,从而减少对健康组织产生的热损伤,据报道美国用钬激光xx青光眼,可以减少患者手术的痛苦。我国2μm激光晶体的水平已达到国际水平,应大力开发生产这种激光晶体。 (2)另外用掺钬的光纤可以制作光纤激光器、光纤放大器、光纤传感器等等光通讯器件在光纤通信迅猛的今天将发挥更重要的作用。 

12、铒(Er)

1843年,瑞典的莫桑德发现了铒元素(Erbium)。铒的光学性质非常突出,一直是人们xx的问题:

(1)Er3+在1550nm处的光发射具有特殊意义,因为该波长正好位于光纤通讯的光学纤维的{zd1}损失,铒离子(Er3+)受到波长980nm、1480nm的光激发后,从基态4I15/2跃迁至高能态4I13/2,当处于高能态的Er3+再跃迁回至基态时发射出1550nm波长的光,石英光纤可传送各种不同波长的光,但不同的光光衰率不同,1550nm频带的光在石英光纤中传输时光衰减率{zd1}(0.15分贝/公里),几乎为下限极限衰减率。因此,光纤通信在1550nm处作信号光时,光损失最小。这样,如果把适当浓度的铒掺入合适的基质中,可依据激光原理作用,放大器能够补偿通讯系统中的损耗,因此在需要放大波长1550nm光信号的电讯网络中,掺铒光纤放大器是必不可少的光学器件,目前掺铒的二氧化硅纤维放大器已实现商业化。据报道,为避免无用的吸收,光纤中铒的掺杂量几十至几百ppm。光纤通信的迅猛发展,将开辟铒的应用新领域。 

(2)另外掺铒的激光晶体及其输出的1730nm激光和1550nm激光对人的眼睛安全,大 气传输性能较好,对战场的硝烟穿透能力较强,保密性好,不易被敌人探测,照射军事目标的对比度较大,已制成军事上用的对人眼安全的便携式激光测距仪。 

(3)Er3+加入到玻璃中可制成稀土玻璃激光材料,是目前输出脉冲能量{zd0},输出功率{zg}的固体激光材料。(4)Er3+还可做稀土上转换激光材料的xx离子。

13、铥(Tm)

铥元素是1879年瑞典的克利夫发现的,并以斯堪迪那维亚(Scandinavia)的旧名Thule命名为铥(Thulium)。铥的主要用途有以下几个方面:

(1)铥用作医用轻便X光机射线源,铥在核反应堆内辐照后产生一种能发射X射线的同位素,可用来制造便携式血液辐照仪上,这种辐射仪能使铥-169受到高中子束的作用转变为铥-170,放射出X射线照射血液并使白血细胞下降,而正是这些白细胞引起器官移植排异反应的,从而减少器官的早期排异反应。

(2)铥元素还可以应用于临床诊断和xx肿瘤,因为它对肿瘤组织具有较高亲合性,重稀土比轻稀土亲合性更大,尤其以铥元素的亲合力{zd0}。

(3)铥在X射线增感屏用荧光粉中做xx剂LaOBr:Br(蓝色),达到增强光学灵敏度,因而降低了X射线对人的照射和危害,与以前钨酸钙增感屏相比可降低X射线剂量50%,这在医学应用具有重要现实的意义。

 (4)Tm3+加入到玻璃中可制成稀土玻璃激光材料,这是目前输出脉冲量{zd0},输出功率{zg}的固体激光材料。Tm3+也可做稀土上转换激光材料的xx离子。

14、镱(Yb)

1878年,查尔斯(Jean Charles)和马利格纳克(G.de Marignac)在“铒”中发现了新的稀土元素,这个元素由伊特必(Ytterby)命名为镱(Ytterbium)。掺镱钆镓石榴石埋置线路波导激光器的制备工作,这一工作的完成对激光技术的进一步发展很有意义。另外,镱还用于荧光粉xx剂、无线电陶瓷、电子计算机记忆元件(磁泡)添加剂、和玻璃纤维助熔剂以及光学玻璃添加剂等。

15、镥(Lu)

1907年,韦尔斯巴赫和尤贝恩(G.Urbain)各自进行研究,用不同的分离方法从“镱”镥的主要用途有:

(1)制造某些特殊合金。例如镥铝合金可用于中子活化分析。

(2)稳定的镥核素在石油裂化、烷基化、氢化和聚合反应中起催化作用。

(3)钇铁或钇铝石榴石的添加元素,改善某些性能。

(4)磁泡贮存器的原料。

(5)一种复合功能晶体掺镥四硼酸铝钇钕,属于盐溶液冷却生长晶体的技术领域,实验证明,掺镥NYAB晶体在光学均匀性和激光性能方面均优于NYAB晶体。

(6)经国外有关部门研究发现,镥在电致变色显示和低维分子半导体中具有潜在的用途。此外,镥还用于能源电池技术以及荧光粉的xx剂等。

金属钇的用途很广,钇铝石榴石可用作激光材料,钇铁石榴石用于微波技术及声能换送,掺铕的钒酸钇及掺铕的氧化钇用作彩色电视机的荧光粉。(

16、钇(Y)

1794年芬兰化学家约翰·加多林分析了这种伊特必矿样品。发现其中除铍、硅、铁的氧化物外,还含有38%的未知元素的氧化物枣“新土”。1797年,瑞典化学家埃克贝格(Anders Gustaf Ekeberg)确认了这种“新土”,命名为钇土(Yttria,钇的氧化物之意)。

钇是一种用途广泛的金属,主要用途有:

(1)钢铁及有色合金的添加剂。FeCr合金通常含0.5-4%钇,钇能够增强这些不锈钢的抗氧化性和延展性;MB26合金中添加适量的富钇混合稀土后,合金的综合性能得到明显的改善,可以替代部分中强铝合金用于飞机的受力构件上;在Al-Zr合金中加入少量富钇稀土,可提高合金导电率;该合金已为国内大多数电线厂采用;在铜合金中加入钇,提高了导电性和机械强度。

(2)含钇6%和铝2%的氮化硅陶瓷材料,可用来研制发动机部件。

(3)用功率400瓦的钕钇铝石榴石激光束来对大型构件进行钻孔、切削和焊接等机械加工。

(4)由Y-Al石榴石单晶片构成的电子显微镜荧光屏,荧光亮度高,对散射光的吸收低,抗高温和抗机械磨损性能好。

(5)含钇达90%的高钇结构合金,可以应用于航空和其它要求低密度和高熔点的场合。

(6)目前倍受人们xx的掺钇SrZrO3高温质子传导材料,对燃料电池、电解池和要求氢溶解度高的气敏元件的生产具有重要的意义。此外,钇还用于耐高温喷涂材料、原子能反应堆燃料的稀释剂、永磁材料添加剂以及电子工业中作吸气剂等。

17、钪(Sc)

1879年,瑞典的化学教授尼尔森(L.F.Nilson, 1840~1899)和克莱夫(P.T.Cleve, 1840~1905)差不多同时在稀有的矿物硅铍钇矿和黑稀金矿中找到了一种新元素。他们给这一元素定名为“Scandium”(钪)。用电解的方法可制得金属钪,在炼钪时将ScCl3、KCl、LiCl共熔,以熔融的锌为阴极电解之,使钪在锌极上析出,然后将锌蒸去可得金属钪。另外,在加工矿石生产铀、钍和镧系元素时易回收钪。钨、锡矿中综合回收伴生的钪也是钪的重要来源之一。 钪在化合物中主要呈3价态,在空气中容易氧化成Sc2O3而失去金属光泽变成暗灰色。 
钪的主要用途有:

(1)钪能与热水作用放出氢,也易溶于酸,是一种强还原剂。

(2)钪的氧化物及氢氧化物只显碱性,但其盐灰几乎不能水解。钪的氯化物为白色结晶,易溶于水并能在空气中潮解。 
(3)在冶金工业中,钪常用于制造合金(合金的添加剂),以改善合金的强度、硬度和耐热和性能。如,在铁水中加入少量的钪,可xxxx铸铁的性能,少量的钪加入铝中,可改善其强度和耐热性。

(4)在电子工业中,钪可用作各种半导体器件,如钪的亚硫酸盐在半导体中的应用已引起了国内外的注意,含钪的铁氧体在计算机磁芯中也颇有前途。 

(5)在化学工业上,用钪化合物作酒精脱氢及脱水剂,生产乙烯和用废盐酸生产氯时的高效催化剂。 

(6)在玻璃工业中,可以制造含钪的特种玻璃。 

(7)在电光源工业中,含钪和钠制成的钪钠灯,具有效率高和光色正的优点。 

(8)自然界中钪均以45Sc形式存在,另外,钪还有9种放射性同位素,即40~44Sc和46~49Sc。其中,46Sc作为示踪剂,已在化工、冶金及海洋学等方面使用。在医学上,国外还有人研究用46Sc来医治癌症。 

我最近在玩和讯财经微博,很方便,很实用。
一句话,一张图,随时随地与我分享理财心得与亲历见闻。
点击以下链接xx,来和我一起玩吧!

郑重声明:资讯 【搜寻投资机会,把握主题投资机会,稀土的全面功用和保护价值- lltg ...】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——