全面浅析电容知识(图解教程)下

全面浅析电容知识(图解教程)下

 

从诺贝尔奖到NV40显卡 透过阴极看电解电容 

    现在我们来了解一下电容的阴极。 万鹏:阴极材料是电容的另一个极板,阴极也就是电容的电解质。电容的阴极目前基本有如下几种: 1.电解液。电解液是最传统的电解质,电解液是由GAMMA丁内酯有机溶剂加弱酸盐电容质经过加热得到的。我们所见到的普通意义上的铝电解电容的阴极,都是这种电解液。使用电解液做阴极有不少好处。首先在于液体与介质的接触面积较大,这样对提升电容量有帮助。其次是使用电解液制造的电解电容,{zg}能耐260度的高温,这样就可以通过波峰焊(波峰焊是SMT贴片安装的一道重要工序),同时耐压性也比较强。此外,使用电解液做阴极的电解电容,当介质被击穿的后,只要击穿电流不持续,那么电容能够自愈。但电解液也有其不足之处。首先是在高温环境下容易挥发、渗漏,对寿命和稳定性影响很大,在高温高压下电解液还有可能瞬间汽化,体积增大引起爆炸(就是我们常说的爆浆);其次是电解液所采用的离子导电法其导电率很低,只有0.01S(电导率,欧姆的倒数)/CM,这造成电容的ESR值(等效串联电阻)特别高。

 



    铝电解液电容爆浆传统铝电解液电容都有防爆槽,这是为了让压力容易被释放,不会发生更大的爆炸。但某些产品为了节约成本省去了防爆槽的工序。

 2. 二氧化锰。二氧化锰是钽电容所使用的阴极材料。二氧化锰是固体,传导方式为电子导电,导电率是电解液离子导电的十倍(0.1S/CM),所以ESR比电解液低。所以,传统上大家觉得钽电容比铝电容好得多,同时固体电解质也没有泄露的危险。此外二氧化锰的耐高温特性也比较好,能耐的瞬间温度在500度左右。二氧化锰的缺点在于在极性接反的情况下容易产生高温,在高温环境下释放出氧气,同时五氧化二钽介质层发生晶质变化,变脆产生裂缝,氧气沿着裂缝和钽粉混合发生爆炸。另外这种阴极材料的价格也比较贵。(和铝电解液电容相比,虽然都是爆炸,可原理却不一样,有多少人能注意到这点呢?)  传统上认为钽电容比铝电容性能好 主要是由于钽加上二氧化锰阴极助威后才有明显好于铝电解液电容的表现。如果把铝电解液电容的阴极更换为二氧化锰, 那么它的性能其实也能提升不少。  

3.接下来我们就要引出一种革命性的阴极——TCNQ。TCNQ是一种有机半导体,是一种络合盐。TCNQ在电容方面的应用,是在90年代中后期才出现的,它的出现代表着电解电容技术革命的开始。TCNQ是一种有机半导体,因此使用TCNQ的电容也叫做有机半导体电容,例如早期的三洋OSCON产品。TCNQ的出现,使电解电容的性能可以直接挑战传统陶瓷电容霸占的很多领域,使电解电容的工作频率由以前的20KHZ直接上升到了1MHZ。TCNQ的出现,使过去按照阳极划分电解电容性能的方法也过时了。因为即使是阳极为铝的铝电解电容,如果使用了TCNQ作为阴极材质的话,其性能照样比传统钽电容(钽+二氧化锰)好得多。TCNQ的导电方式也是电子导电,其导电率为1S/CM,是电解液的100倍,二氧化锰的10倍。



紫色为TCNQ电容(SANYO)

使用TCNQ作为阴极的有机半导体电容,其性能非常稳定,也比较廉价。不过它的热阻性能不好,其熔解温度只有230-240摄氏度,所以有机半导体电容一般很少用SMT贴片工艺制造,因为无法通过波峰焊工艺,所以我们看到的有机半导体电容基本都是插件式安装的。TCNQ还有一个不足之处就是对环境的污染。由于TCNQ是一种氰化物,在高温时容易挥发出剧毒的氰气,因此在生产和使用中会有限制。 

 

阴极的革命 固体聚合物导体


4.如果说TCNQ是电解电容革命的开始的话,那么真正的革命的主角当属PPY(聚吡咯)以及PEDT这类固体聚合物导



xx的SANYO OSCON SVP系列铝固体聚合物导体电容


70年代末人们发现,使用搀杂法可以获得优良的导电聚合物材料,从而引发了一场聚合物导体的技术革命。1985年,小日本首次开发了聚吡咯膜,如果使用复合法的话,可以使其导电率达到铜和银的水平,但它又不是金属而相当于工程塑料,附着性比金属好,同时价格也比铜和银低很多,此外,在受力情况下,其导电率还会产生变化(其特性很像人的神经系统)。这无疑是电容研发者梦寐以求的阴极材质。2000年,美国人因为发明了大规模制造PPY聚吡咯膜的方法,而获得了当年的诺贝尔化学奖,其重要性可见一斑。聚吡咯的用途非常广泛,从隐形战斗机到人工手,以及显示器和电池、电容等等。聚吡咯的研发实力,可以反映出一个国家的化学水平,而我国的西安交通大学和成都电子科技大学在这方面比较突出。



三洋CVEX 固体聚合物导体+电解液混合电容 注意防爆槽

使用PPY聚吡咯和PEDT做为阴极材料的电容,叫做固体聚合物导体电容。其电导率可以达到100S/CM,这是TCNQ盐的100倍,是电解液的10000倍,同时也没有污染。固体聚合物导体电容的温度特性也比较好,可以忍耐300度以上的高温,因此可以使用SMT贴片工艺安装,也适合大规模生产。固体聚合物导体电容的安全性较好,当遇到高温的时候,电解质只是熔化而不会产生爆炸,因此它不像普通铝电解液电容那样开有防爆槽(三洋有一种CVEX电容,阴极为固体聚合物导体加电解液的混合型,因此也有防爆槽)。固体聚合物导体电容的缺陷在于其价格相对偏高,同时耐电压性能不强。

 





GF 6800U使用的CHEMICON PS/16V电容


无防爆槽{zx1}锐的GF 6800 Ultra显卡,在NVIDIA公版上就使用了CHEMICON PS/16V固体聚合物导体电容。我看到有些“高手”对此不屑一顾,说16V算什么?确实,和使用电解液为阴极的电容相比,16V确实不算什么。但是在16伏特电压下,它的ESR性能不是一般的电解液电容所能达到的,因此才被应用到GF 6800 Ultra这样的{dj0}显卡上。

    是这样的。基本上所有组合都可以。例如钽电解电容也可以使用固体聚合物导体做为阴极,而铝电解电容既可以使用电解液,也可以使用TCNQ、PPY和PEDT等等。现在新型的钽电容也采用了PPY和PEDT这类固体聚合物导体做阴极,因此性能进步很多,也没有以往二氧化锰阴极易爆炸的危险。如今{zh0}的钽聚合物电容的ESR可以达到5毫欧姆。这类性能高、体积小的钽聚合物电容一般使用手机、数码相机等一些对体积要求较高的设备上。 


    你刚才提到了有些电容不适合SMT贴片工艺,请问是否使用SMT,对性能会带来什么影响? 

    无论是插件还是贴片式的安装工艺,电容本身都是直立于PCB的,根本的区别方式是SMT贴片工艺安装的电容,有黑色的橡胶底座。SMT的好处主要在于生产方面,其自动化程度高,精度也高,在运输途中不像插件式那样容易受损。但是SMT贴片工艺安装,需要波峰焊工艺处理,电容经过高温之后可能会影响性能,尤其是阴极采用电解液的电容,经过高温后电解液可能会干枯。插件工艺的安装成本低,因此在同样成本下,电容本身的性能可以更好一些。由于欧美工厂的机械成本低而人工比较贵,所以大部分倾向于SMT贴片制造。而国内工厂的人工较便宜,所以厂商更愿意使用插件式安装。 在性能方面,插件式电容对频率的适应性差一些,不过不到500MHz以上的频率是很难体现出差异的。使用插件式安装的电容中也有很好的产品,例如CHEMICON的PS系列有一部分就是使用插件式的。

  主板上的电容大多有“皮” 


  有塑料外皮的电容和没有外皮的铝壳电容,性质上有什么区别吗?为什么主板上大都使用前者?



新款主板开始使用铝聚合物xx电容 


    所有的直立式电容都是铝壳电容。只不过有一部分电容外面包了PVC薄膜,这样对温度的适应性会好一点,但是这样做会污染环境,所以现在的电容都很少使用了。从成本上将,有塑料外皮的电容对铝壳要求低,成本会低一些。主板产品因为面积大,可以用稳压电源,这样开关频率相对较低,所以没必要太好的电容,而显卡因为面积小,对电容要求就高。不过现在很多新款主板也开始用比较xx的电容了。

电解电容阴极性能初步对比


 

 

 

 



    在以上表格当中,红线代表铝聚合物导体电容,绿色虚线表示普通铝电解液电容,蓝色虚线表示钽二氧化锰电容,黄色虚线表示超大容量(1000μF)、超大体积(后面的“Φ”符号代表了各自的体积)的铝电解液电容。表格的X轴线表示频率,Y轴线表示阻抗,Y轴的阻抗数值越低,ESR值就越低,性能就越好。

    这个表格体现的是在频率逐步提升的情况下,不同种类电容的性能变化。可以看出,当频率达到10KHz以上的时候铝聚合物导体电容的ESR值继续保持在较低的水平,当达到100KHz的时候,其ESR值低于其它所有类型的电容,包括钽电容和容量为1000μF的铝电解液电容(注意:两者的体积比例为300:5000),而该电容的容量仅为47μF。到了1MHZ,铝聚合物导体电容优势更明显。



    以上这4个表格代表的是陶瓷电容(左边两个表格)和TCNQ有机半导体电容(右边两个表格),在施加电压为0V(上表)和20V(下表)的两种情况下,其ESR值的波动。可以看出,陶瓷电容在20V电压,频率接近100KHz的时候ESR出现了剧烈的波动。而TCNQ电容的ESR值则保持平滑的曲线。新电解材料的使用使电解电容在某些方面比电容的{wz}陶瓷电容更有优势。


 

    当极性接反并施加2倍额定电压和20A电流时不同阴极钽电容的反映:如上图,使用二氧化锰为阴极的钽二氧化锰电容全部爆炸,而使用PPY为阴极的钽固体聚合物电容虽然全部报废,但表面无损。这反映了二氧化锰阴极电容和聚合物电容在安全性上的差异。

 

已投稿到:
郑重声明:资讯 【全面浅析电容知识(图解教程)下】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——