点击上方 “ 畅学电子 ” 一键关注,轻松学习电子知识
曾经想到过ADC的TUE技术规格中的“总”代表什么吗?它是不是简单到将ADC数据表的所有DC误差技术规格(即偏移电压,增益误差,INL)相加,还是要更复杂一些?事实上,TUE是总系统误差相对于ADC工作输入范围的比率。
更确切地说,TUE是单位为xx有效位 (LSB) 的DC误差技术规格。xx有效位 (LSB) 代表ADC的实际和理想传递函数之间的xx偏离。这个技术规格假定未执行系统级校准。在概念上,TUE是ADC运行方式中以下非理想类型数值的组合:
● 偏移误差 (VOS):如图1所示,ADC实际和理想传递曲线间的恒定差异。这个值是测得的将ADC输入短接至地而获得的数字输出。
图1. ADC偏移误差与输入电压之间的关系
● 增益误差:ADC输出的实际和理想斜率之间的差异。他通常表示为满量程输出码上的ADC范围或xx误差的比率。如图2中所示,增益误差的xx值在模拟输入接近满量程值时增加。
图2. ADC增益误差与输入电压之间的关系
● 积分非线性 (INL):实际ADC传递曲线到理想直线运行方式的xx非线性偏离。ADC的INL响应没有一定的形状,并且取决于内部电路架构,以及由前端信号调节电路导致的失真。
图3. ADC INL误差与输入电压之间的关系
大多数ADC数据表指定所有上述DC误差的典型值和xx值,但是未指定TUE这方面的数值。计算TUE的xx值可不像将所有单独的DC误差xx值加在一起那么简单。这是因为所有这些误差是不相关的,并且在出现最差偏移的情况下,增益和线性误差也许不全都出现在ADC传递函数的同一个输入电压上。因此,误差的简单求和也许使系统精度看起来未必那么差。这在应用的动态范围被限制在传递函数的中间时更是如此。
在这典型数据采集系统中,与ADC在一起的还有一个输入驱动器和一个电压基准,他们也会影响总体偏移和增益误差。因此,在大多数没有校准的系统中,偏移和增益误差决定了计算TUExx值时用到的INL。计算特定模拟输入电压上的xxTUE的推荐方法是,那一点上所有单个误差xx值的和方根,(方程式1)。将所有这些误差转换为同样的单位很重要,通常转换为LSB。
方程式1生成一个针对TUE的典型“蝴蝶结”形状的误差图。对于具有较高偏移误差的系统,“蝴蝶结”图有一个更厚的结(图4A)。相反,对于增益误差较高的系统,“蝴蝶结”的结变薄,而弓形变厚(图4B)。
图4.“蝴蝶结”形状的ADC TUE与输入电压间的关系
总的来说,由于误差取决于ADC工作时的输入电压范围,所以没有计算ADCxxTUE的确定公式。如果系统不要求采用整个ADC输入范围,你可以通过使ADC远离其传递函数的端点运行来大大减少TUE。
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >
==> 前往 www.eeskill.com 学习更多知识!