企业库 微信资讯

什么是内存

洛川博达电子科贸    2015/3/3  

内存英文名称:Memory  拼音:nèi cún
  在计算机的组成结构中,有一个很重要的部分,就是存储器。存储器是用来存储程序和数据的部件,对于计算机来说,有了存储器,才有记忆功能,才能保证正常工作。存储器的种类很多,按其用途可分为主存储器和辅助存储器,主存储器又称内存储器(简称内存,港台称之为记忆体)。
  内存又称主存,是CPU能直接寻址的存储空间,由半导体器件制成。内存的特点是存取 内存速率快。内存是电脑中的主要部件,它是相对于外存而言的。我们平常使用的程序,如Windows操作系统、打字软件、游戏软件等,一般都是安装在硬盘等外存上的,但xx是不能使用其功能的,必须把它们调入内存中运行,才能真正使用其功能,我们平时输入一段文字,或玩一个游戏,其实都是在内存中进行的。就好比在一个书房里,存放书籍的书架和书柜相当于电脑的外存,而我们工作的办公桌就是内存。通常我们把要xx保存的、大量的数据存储在外存上,而把一些临时的或少量的数据和程序放在内存上,当然内存的好坏会直接影响电脑的运行速度。

内存就是暂时存储程序以及数据的地方,比如当我们在使用WPS处理文稿时,当你在键盘上敲入字符时,它就被存入内存中,当你选择存盘时,内存中的数据才会被存入硬(磁)盘。在进一步理解它之前,还应认识一下它的物理概念。

DDR 和DDR2 技术对比的数据

内存一般采用半导体存储单元,包括随机存储器(RAM),只读存储器(ROM),以及高速缓存(CACHE)。只不过因为RAM是其中最重要的存储器。(synchronous)SDRAM同步动态随机存取存储器:SDRAM为168脚,这是目前PENTIUM及以上机型使用的内存。SDRAM将CPU与RAM通过一个相同的时钟锁在一起,使CPU和RAM能够共享一个时钟周期,以相同的速度同步工作,每一个时钟脉冲的上升沿便开始传递数据,速度比EDO内存提高50%。DDR(DOUBLE DATA RATE)RAM :SDRAM的更新换代产品,他允许在时钟脉冲的上升沿和下降沿传输数据,这样不需要提高时钟的频率就能加倍提高SDRAM的速度。

只读存储器(ROM)

ROM表示只读存储器(Read Only Memory),在制造ROM的时候,信息(数据或程序)就被存入并xx保存。这些信息只能读出,一般不能写入,即使机器停电,这些数据也不会丢失。ROM一般用于存放计算机的基本程序和数据,如BIOS ROM。其物理外形一般是双列直插式(DIP)的集成块。

随机存储器(RAM)

内存

随机存储器(Random Access Memory)表示既可以从中读取数据,也可以写入数据。当机器电源关闭时,存于其中的数据就会丢失。我们通常购买或升级的内存条就是用作电脑的内存,内存条(SIMM)就是将RAM集成块集中在一起的一小块电路板,它插在计算机中的内存插槽上,以减少RAM集成块占用的空间。目前市场上常见的内存条有1G/条,2G/条,4G/条等。

高速缓冲存储器(Cache)

Cache也是我们经常遇到的概念,也就是平常看到的一级缓存(L1 Cache)、二级缓存(L2 Cache)、三级缓存(L3 Cache)这些数据,它位于CPU与内存之间,是一个读写速度比内存更快的存储器。当CPU向内存中写入或读出数据时,这个数据也被存储进高速缓冲存储器中。当CPU再次需要这些数据时,CPU就从高速缓冲存储器读取数据,而不是访问较慢的内存,当然,如需要的数据在Cache中没有,CPU会再去读取内存中的数据。

物理存储器地址空间

物理存储器和存储地址空间是两个不同的概念。但是由于这两者有十分密切的关系,而且两者都用B、KB、MB、GB来度量其容量大小,因此容易产生认识上的混淆。初学者弄清这两个不同的概念,有助于进一步认识内存储器和用好内存储器。

内存

物理存储器是指实际存在的具体存储器芯片。如主板上装插的内存条和装载有系统的BIOS的ROM芯片,显示卡上的显示RAM芯片和装载显示BIOS的ROM芯片,以及各种适配卡上的RAM芯片和ROM芯片都是物理存储器。

存储地址空间是指对存储器编码(编码地址)的范围。所谓编码就是对每一个物理存储单元(一个字节)分配一个号码,通常叫作“编址”。分配一个号码给一个存储单元的目的是为了便于找到它,完成数据的读写,这就是所谓的“寻址”(所以,有人也把地址空间称为寻址空间)。

地址空间的大小和物理存储器的大小并不一定相等。举个例子来说明这个问题:某层楼共有17个房间,其编号为801~817。这17个房间是物理的,而其地址空间采用了三位编码,其范围是800~899共100个地址,可见地址空间是大于实际房间数量的。

对于386以上档次的微机,其地址总线为32位,因此地址空间可达2的32次方,即4GB。(虽然如此,但是我们一般使用的一些操作系统例如windows xp、却最多只能识别或者使用3.25G的内存,64位的操作系统能识别并使用4G和4G以上的的内存,

好了,现在可以解释为什么会产生诸如:常规内存、保留内存、上位内存、xx内存、扩充内存和扩展内存等不同内存类型。

内存的发展

在计算机诞生初期并不存在内存条的概念,最早的内存是以磁芯的形式排列在线路上,每个磁芯与晶体管组成的一个双稳态电路作为一比特(BIT)的存储器,每一比特都要有玉米粒大小,可以想象一间的机房只能装下不超过百k字节左右的容量。后来才出线现了焊接在主板上集成内存芯片,以内存芯片的形式为计算机的运算提供直接支持。那时的内存芯片容量都特别小,最常见的莫过于256K×1bit、1M×4bit,虽然如此,但这相对于那时的运算任务来说却已经绰绰有余了。

内存条的诞生

内存芯片的状态一直沿用到286初期,鉴于它存在着无法拆卸更换的弊病,这对于计算机的发展造成了现实的阻碍。有鉴于此,内存条便应运而生了。将内存芯片焊接到事先设计好的印刷线路板上,而电脑主板上也改用内存插槽。这样就把内存难以安装和更换的问题彻底解决了。

在80286主板发布之前,内存并没有被世人所重视,这个时候的内存是直接固化在主板上,而且容量只有64 ~256KB,对于当时PC所运行的工作程序来说,这种内存的性能以及容量足以满足当时软件程序的处理需要。不过随着软件程序和新一代80286硬件平台的出现,程序和硬件对内存性能提出了更高要求,为了提高速度并扩大容量,内存必须以独立的封装形式出现,因而诞生了“内存条”概念。

在80286主板刚推出的时候,内存条采用了SIMM(Single In-lineMemory Modules,单边接触内存模组)接口,容量为30pin、256kb,必须是由8 片数据位和1 片校验位组成1 个bank,正因如此,我们见到的30pin SIMM一般是四条一起使用。自1982年PC进入民用市场一直到现在,搭配80286处理器的30pin SIMM内存是内存领域的开山鼻祖。

随后,在1988 ~1990 年当中,PC 技术迎来另一个发展高峰,也就是386和486时代,此时CPU 已经向16bit 发展,所以30pin SIMM内存再也无法满足需求,其较低的内存带宽已经成为急待解决的瓶颈,所以此时72pin SIMM 内存出现了,72pin SIMM支持32bit快速页模式内存,内存带宽得以大幅度提升。72pin SIMM内存单条容量一般为512KB ~2MB,而且仅要求两条同时使用,由于其与30pin SIMM 内存无法兼容,因此这个时候PC业界毅然将30pin SIMM 内存淘汰出局了。

EDO DRAM(Extended Date Out RAM 外扩充数据模式存储器)内存,这是1991 年到1995 年之间盛行的内存条,EDO DRAM同FPM DRAM(Fast Page Mode RAM 快速页面模式存储器)极其相似,它取消了扩展数据输出内存与传输内存两个存储周期之间的时间间隔,在把数据发送给CPU的同时去访问下一个页面,故而速度要比普通DRAM快15~30%。工作电压为一般为5V,带宽32bit,速度在40ns以上,其主要应用在当时的486及早期的Pentium电脑上。

在1991 年到1995 年中,让我们看到一个尴尬的情况,那就是这几年内存技术发展比较缓慢,几乎停滞不前,所以我们看到此时EDO DRAM有72 pin和168 pin并存的情况,事实上EDO内存也属于72pin SIMM 内存的范畴,不过它采用了全新的寻址方式。EDO 在成本和容量上有所突破,凭借着制作工艺的飞速发展,此时单条EDO内存的容量已经达到4 ~16MB。由于Pentium及更高级别的CPU数据总线宽度都是64bit甚至更高,所以EDO DRAM与FPM DRAM都必须成对使用。

SDRAM时代

自Intel Celeron系列以及AMD K6处理器以及相关的主板芯片组推出后,EDO DRAM内存性能再也无法满足需要了,内存技术必须彻底得到个革新才能满足新一代CPU架构的需求,此时内存开始进入比较经典的SDRAM时代。

第一代SDRAM内存为PC66 规范,但很快由于Intel 和AMD的频率之争将CPU外频提升到了100MHz,所以PC66内存很快就被PC100内存取代,接着133MHz 外频的PIII以及K7时代的来临,PC133规范也以相同的方式进一步提升SDRAM 的整体性能,带宽提高到1GB/sec以上。由于SDRAM 的带宽为64bit,正好对应CPU 的64bit 数据总线宽度,因此它只需要一条内存便可工作,便捷性进一步提高。在性能方面,由于其输入输出信号保持与系统外频同步,因此速度明显超越EDO 内存。

不可否认的是,SDRAM内存由早期的66MHz,发展后来的100MHz、133MHz,尽管没能彻底解决内存带宽的瓶颈问题,但此时CPU超频已经成为DIY用户永恒的话题,所以不少用户将品牌好的PC100品牌内存超频到133MHz使用以获得CPU超频成功,值得一提的是,为了方便一些超频用户需求,市场上出现了一些PC150、PC166规范的内存。

尽管SDRAM PC133内存的带宽可提高带宽到1064MB/S,加上Intel已经开始着手最新的Pentium 4计划,所以SDRAM PC133内存不能满足日后的发展需求,此时,Intel为了达到独占市场的目的,与Rambus联合在PC市场推广Rambus DRAM内存(称为RDRAM内存)。与SDRAM不同的是,其采用了新一代高速简单内存架构,基于一种类RISC(Reduced Instruction Set Computing,精简指令集计算机)理论,这个理论可以减少数据的复杂性,使得整个系统性能得到提高。

在AMD与Intel的竞争中,这个时候是属于频率竞备时代,所以这个时候CPU的主频在不断提升,Intel为了盖过AMD,推出高频PentiumⅢ以及Pentium 4 处理器,因此Rambus DRAM内存是被Intel看着是未来自己的竞争杀手锏,Rambus DRAM内存以高时钟频率来简化每个时钟周期的数据量,因此内存带宽相当出色,如PC 1066 1066 MHz 32 bits带宽可达到4.2G Byte/sec,Rambus DRAM曾一度被认为是Pentium 4 的绝配。

尽管如此,Rambus RDRAM内存生不逢时,后来依然要被更高速度的DDR“掠夺”其宝座地位,在当时,PC600、PC700的Rambus RDRAM 内存因出现Intel820芯片组“失误事件”、PC800 Rambus RDRAM因成本过高而让Pentium 4平台高高在上,无法获得大众用户拥戴,种种问题让Rambus RDRAM胎死腹中,Rambus曾希望具有更高频率的PC1066 规范RDRAM来力挽狂澜,但最终也是拜倒在DDR 内存面前。

DDR时代

DDR SDRAM(Double Data Rate SDRAM)简称DDR,也就是“双倍速率SDRAM”的意思。DDR可以说是SDRAM的升级版本,DDR在时钟信号上升沿与下降沿各传输一次数据,这使得DDR的数据传输速度为传统SDRAM的两倍。由于仅多采用了下降缘信号,因此并不会造成能耗增加。至于定址与控制信号则与传统SDRAM相同,仅在时钟上升缘传输。

DDR内存是作为一种在性能与成本之间折中的解决方案,其目的是迅速建立起牢固的市场空间,继而一步步在频率上高歌猛进,最终弥补内存带宽上的不足。第一代DDR200 规范并没有得到普及,第二代PC266 DDR SRAM(133MHz时钟×2倍数据传输=266MHz带宽)是由PC133SDRAM内存所衍生出的,它将DDR 内存带向第一个高潮,目前还有不少赛扬和AMD K7处理器都在采用DDR266规格的内存,其后来的DDR333内存也属于一种过度,而DDR400内存成为目前的主流平台选配,双通道DDR400内存已经成为800FSB处理器搭配的基本标准,随后的DDR533 规范则成为超频用户的选择对象。

DDR2时代

随着CPU 性能不断提高,我们对内存性能的要求也逐步升级。不可否认,紧紧依高频率提升带宽的DDR迟早会力不从心,因此JEDEC 组织很早就开始酝酿DDR2 标准,加上LGA775接口的915/925以及最新的945等新平台开始对DDR2内存的支持,所以DDR2内存将开始演义内存领域的今天。

DDR2 能够在100MHz 的发信频率基础上提供每插脚最少400MB/s 的带宽,而且其接口将运行于1.8V 电压上,从而进一步降低发热量,以便提高频率。此外,DDR2 将融入CAS、OCD、ODT 等新性能指标和中断指令,提升内存带宽的利用率。从JEDEC组织者阐述的DDR2标准来看,针对PC等市场的DDR2内存将拥有400、533、667MHz等不同的时钟频率。xx的DDR2内存将拥有800、1000MHz两种频率。DDR-II内存将采用200-、220-、240-针脚的FBGA封装形式。最初的DDR2内存将采用0.13微米的生产工艺,内存颗粒的电压为1.8V,容量密度为512MB。

内存技术在2005年将会毫无悬念,SDRAM为代表的静态内存在五年内不会普及。QBM与RDRAM内存也难以挽回颓势,因此DDR与DDR2共存时代将是铁定的事实。

PC-100的“接班人”除了PC一133以外,VCM(VirXual Channel Memory)也是很重要的一员。VCM即“虚拟通道存储器”,这也是目前大多数较新的芯片组支持的一种内存标准,VCM内存主要根据由NEC公司开发的一种“缓存式DRAM”技术制造而成,它集成了“通道缓存”,由高速寄存器进行配置和控制。在实现高速数据传输的同时,VCM还维持着对传统SDRAM的高度兼容性,所以通常也把VCM内存称为VCM SDRAM。VCM与SDRAM的差别在于不论是否经过CPU处理的数据,都可先交于VCM进行处理,而普通的SDRAM就只能处理经CPU处理以后的数据,所以VCM要比SDRAM处理数据的速度快20%以上。目前可以支持VCM SDRAM的芯片组很多,包括:Intel的815E、VIA的694X等。

3.RDRAM

Intel在推出:PC-100后,由于技术的发展,PC-100内存的800MB/s带宽已经不能满足需求,而PC-133的带宽提高并不大(1064MB/s),同样不能满足日后的发展需求。Intel为了达到独占市场的目的,与Rambus公司联合在PC市场推广Rambus DRAM(DirectRambus DRAM)。

Rambus DRAM是:Rambus公司最早提出的一种内存规格,采用了新一代高速简单内存架构,基于一种RISC(Reduced Instruction Set Computing,精简指令集计算机)理论,从而可以减少数据的复杂性,使得整个系统性能得到提高。Rambus使用400MHz的16bit总线,在一个时钟周期内,可以在上升沿和下降沿的同时传输数据,这样它的实际速度就为400MHz×2=800MHz,理论带宽为(16bit×2×400MHz/8)1.6GB/s,相当于PC-100的两倍。另外,Rambus也可以储存9bit字节,额外的一比特是属于保留比特,可能以后会作为:ECC(ErroI·Checking and Correction,错误检查修正)校验位。Rambus的时钟可以高达400MHz,而且仅使用了30条铜线连接内存控制器和RIMM(Rambus In-line MemoryModules,Rambus内嵌式内存模块),减少铜线的长度和数量就可以降低数据传输中的电磁干扰,从而快速地提高内存的工作频率。不过在高频率下,其发出的热量肯定会增加,因此第一款Rambus内存甚至需要自带散热风扇。

DDR3时代

DDR3相比起DDR2有更低的工作电压,从DDR2的1.8V降落到1.5V,性能更好更为省电;DDR2的4bit预读升级为8bit预读。DDR3目前xx能够达到2000Mhz的速度,尽管目前最为快速的DDR2内存速度已经提升到800Mhz/1066Mhz的速度,但是DDR3内存模组仍会从1066Mhz起跳。

一、DDR3在DDR2基础上采用的新型设计:

1.8bit预取设计,而DDR2为4bit预取,这样DRAM内核的频率只有接口频率的1/8,DDR3-800的核心工作频率只有100MHz。

2.采用点对点的拓朴架构,以减轻地址/命令与控制总线的负担。

3.采用100nm以下的生产工艺,将工作电压从1.8V降至1.5V,增加异步重置(Reset)与ZQ校准功能。部分厂商已经推出1.35V的低压版DDR3内存。

DDR4时代

内存厂商预计在2012年,DDR4时代将开启,起步频率降至1.2V,而频率提升至2133MHz,次年进一步将电压降至1.0V,频率则实现2667MHz。[1]

新一代的DDR4内存将会拥有两种规格。根据多位半导体业界相关人员的介绍,DDR4内存将会是Single-endedSignaling( 传统SE信号)方式DifferentialSignaling( 差分信号技术)方式并存。其中AMD公司的PhilHester先生也对此表示了确认。预计这两个标准将会推出不同的芯片产品,因此在DDR4内存时代我们将会看到两个互不兼容的内存产品。

[2]


6其他内存编辑

SRAM

SRAM(Static RAM)意为静态随机存储器。SRAM数据不需要通过不断地刷新来保存,因此速度比DRAM(动态随机存储器)快得多。但是SRAM具有的缺点是:同容量相比DRAM需要非常多的晶体管,发热量也非常大。因此SRAM难以成为大容量的主存储器,通常只用在CPU、GPU中作为缓存,容量也只有几十K至几十M。

SRAM目前发展出的一个分支是eSRAM(Enhanced SRAM),为增强型SRAM,具备更大容量和更高运行速度。

RDRAM

RDRAM是由RAMBUS公司推出的内存。RDRAM内存条为16bit,但是相比同期的SDRAM具有更高的运行频率,性能非常强。

然而它是一个非开放的技术,内存厂商需要向RAMBUS公司支付授权费。并且RAMBUS内存的另一大问题是不允许空通道的存在,必须成对使用,空闲的插槽必须使用终结器。因此,除了短寿的Intel i820和i850芯片组对其提供支持外,PC平台没有支持RAMBUS内存的芯片组。

可以说,它是一个优秀的技术,但不是一个成功的商业产品。

XDR RAM

XDR内存是RDRAM的升级版。依旧由RAMBUS公司推出。XDR就是“eXtreme Data Rate”的缩写。

XDR依旧存在RDRAM不能大面普及的那些不足之处。因此,XDR内存的应用依旧非常有限。比较常见的只有索尼的PS3游戏机。

Fe-RAM

铁电存储器是一种在断电时不会丢失内容的非易失存储器,具有高速、高密度、低功耗和抗辐射等优点。由于数据是通过铁元素的磁性进行存储,因此,铁电存储器无需不断刷新数据。其运行速度将会非常乐观。而且它相比SRAM需要更少的晶体管。它被业界认为是SDRAM的最有可能的替代者。

MRAM

磁性存储器。它和Fe-RAM具有相似性,依旧基于磁性物质来记录数据。

OUM

相变存储器。

奥弗辛斯基(Stanford Ovshinsky)在1968年发表了第一篇关于非晶体相变的论文,创立了非晶体半导体学。一年以后,他首次描述了基于相变理论的存储器:材料由非晶体状态变成晶体,再变回非晶体的过程中,其非晶体和晶体状态呈现不同的反光特性和电阻特性,因此可以利用非晶态和晶态分别代表“0”和“1”来存储数据。[3]


关注“洛川博达电子科贸微信公众号"bdkm0911"

免费订阅 信息速递,掌握即时技产业动态与xxxx方案

欢迎订阅博达电子科贸微信公众平台!

经营范围:专业批发零售品牌电脑.组装机-电脑周边配件耗材。☞大型网吧及企事业单位网络维护☜承接:停车场监控,小区监控,城市道路监控,乡村道路监控,工厂监控,校园监控,酒店监控,商场监控,超市监控,楼宇可视对讲,加油站监控,收费站监控,鱼塘监控。室内背景音乐安装,广场音乐安装。

电话:13892179468

地址:洛川县府北街西段

欢迎直接给我们留言

每天分享正能量,构建文明洛川!更多电脑科普知识,电脑故障帮您解决,xx博达电子科贸。

明天精彩继续... ...

您一个小小的分享动作,可能照亮无数人的命运!我们因梦想而伟大、因行动而成功、因学习而改变!请把您的爱心传递下去帮助更多人学习成长,走向成功!这就叫爱出者爱返,福往者福来,好东西记得要分享给您的朋友,独乐乐不如众乐乐。

点右上角分享到朋友圈
点右上角查看公众帐号→关注





上一篇:什么是硬盘
技术支持:免费b2b网站   [免责申明]   [举报]    立即注册发布信息