企业库 微信资讯

【KOE可意照明·照明知识】评测:GE、飞利浦、欧司朗LED球泡灯哪家强?

KOE可意照明    2015/2/24  

一、由来


  市面上LED灯具琳琅满目,网上评测又众说纷纭,找不到满足自己需求的文档,便准备自己动手测一回。此为本文档由来。希望此文能给准备选购LED灯具的人一点参考,也希望有更多人能提供更多灯具的测试报告。


  二、目标理想的测试目标有这么几个


  实际功耗、电光转化效率、频闪控制、温度控制、光谱组成。


  实际由于条件的限制,目标5在业余条件下较难实现,不得不放弃;其余目标在业余条件下均难以xx测量,只做定性分析、横向比较,作为采购的参考,诸看官知悉。


  三、测试对象家里的照明系统涉及球泡、射灯、吸顶灯三大类,球泡用得最多,便以此为先,若有余暇再着手射灯、吸顶灯的测试。


  LED球泡种类繁多,作为有洁癖的技术宅,本应将市场上主流的球泡都测一遍,怎奈预算有限,以适用照明改造为原则,仅选取几种球泡作为测试对象,先来看一张全家福:



从上到下从左到右分别为:


  飞利浦LED球泡灯


  萤火虫4.8W、品苑3W(型号3001)


  欧司朗(OSRAM)系列:4W(型号:LEDstarclassicA25)、6W(LEDstarclassicA40)、9W(LEDstarclassicA60)、10W(LEDstarclassicA70);


  飞利浦(Philips)系列:3W(型号:9290002558)、5W(型号:9290002485)、7.5W(型号:9290002488C)、10W(型号:9290002491);


  通用电气(GE)系列:2W(代码:903434)、3W(代码:11452)、3W(代码:94101)、5W(代码:11455)、8W(代码:11458)、11W(代码:11483)


  另外还有一只25W白炽灯作为参考标准。


  这里除了GE3W(94101)是冷白光外,其他全部都是暖白光。之所以选暖白光,除了个人偏好外,LED的蓝光溢出对视力的影响也是一个考虑:暖白光中蓝光成分相对较少。可以看下OSRAM 2700K与6500K色温的LED光谱。

  

  OSRAM 2700K色温光谱

  

  OSRAM 6500K光谱


  可以看到,6500K色温的LED光谱中,短波段成分很高。虽然说蓝光溢出对眼睛的影响,其研究尚未有定论,但能够避免的还是注意下比较好。


  四、测试工具虽然测试并不全面,测试用具却用到不少,看看工具全家福:




  从左到右从上到下分别为:


  自制测试灯座1、示波器、精密温度计2根、数字温度计、照度计、功率表、卷尺、自制光敏电阻测试电路及供电电池、自制测试灯座2。


  五、测试过程中存在的误差因数测试过程中存在较多的误差因数。最重要的误差来源是光敏器件的非线性。比如数字照度计的频率响应曲线。

  


照度计频谱响应


  这个工具的非线性特性,导致其对不同光谱的敏感度不同,偏偏各个LED灯泡的光谱特性在业余条件下很难测试,而且生产厂家,除了OSRAM,均未提供光谱,所以光谱特性导致的误差,不但没法测量,甚至连评估都很困难。基于此种情况,以下的所有测试几乎都可以说是不可信的。


  但我仍做完所有测试,主要原因是除GE3W(94101)外,其他所有待测灯泡色温都是2700K—3300K。色温接近,光谱特性、光敏器件的敏感度偏差不会太大。况且这次测试以横向对比为主,并不强求xx量化,所以还是有一定参考价值的。


  其他的误差来源,比如仪器精度、手工操作的不确定性、环境温度、环境亮度等影响反而不是太大,在测试过程或数据处理过程稍加注意即可。


  六、功耗测试功耗测试在整个过程中算是比较xx的一个测试。


  LED灯具与白炽灯的显著区别就是LED灯有驱动电路。整个LED灯具的功耗由电路的插入损耗加上LED本身的功耗构成。


  虽然目前来说各种LED驱动电路效率都蛮高,但显然任何电路的效率都不可能100%%uFF0C我们买到的几瓦几瓦,都是额定功率,而不是LED本身的功耗--这一点与常识有点出入。虽然在不拆解的情况下无法得到电路效率,但就算假设电路效率100%%uFF0C通过额定功率和实测功率的对比可以看到,哪些产品存在虚标功率的现象。

  



功率测试


  上图蓝色部分为额定功率,红色为实测功率。从图中我们可以看到,各家的产品,额定功率与实际功率相差都不大。需要注意到是实测功率小于额定功率的那部分产品,肯定存在功率虚标现象,只不过大多虚标得不多。


  测功耗的同时,也测了下功率因数。虽然国家对居民用电设备的功率因数没有要求,对实际的电费也不会产生影响,但低功率因数对电网来说总归是种负担,所以我们在可能的情况下,尽量选功率因数高的产品比较好。

  


功率因数测试


  从功率因数上来看,普遍是功率比较大的,功率因数比较高。这可能与其电路设计有关:低功耗的估计直接电容降压,高功率的可能用到专用的芯片来驱动----这只是推测。


  这里赞下GE3W(94101),这是xx在包装上标识了功率因数的产品。大家可以看到,从上到下已经多次提到它了,这xx是一个奇葩产品,不仅与其他厂家的产品很不一样,甚至与GE自己的产品比也是独树一帜的。下面还会有很多其表现的地方。


  七、电光转化效率测试


  这个参数无法xx测量,我们只能通过迂回对比的方法,来得到各个球泡的光电转化效率。灯具的转换效率应为流明/瓦,但光通量的测量需要用到积分球,没有这个条件,也不需要这个精度,就简单粗暴地使用发光强度代替光通量来做横向比较。具体方法如下:


  测出球泡的功耗、测出球泡产生某个照度的距离、求出发光强度、求出每瓦功耗对光强的贡献。


  实际测试中,用功率表得到每个球泡的功耗P;用照度计测试得到每个球泡产生40Lux照度的点,并测量这个点与球泡中心点的距离D。公式 (40*D^2)/P即是每瓦功耗对光强的贡献,也即我们想要的光电转化效率。这个效率测出来误差很大,主要受球泡大小及发光角度的影响。


  但对我们使用者来说,照度是实际体现灯具使用情况的一个指标,所以这个测试虽不xx但很实用。测试结果如下

  


LED电光转化效率


  从这个图表中我们可以看到,白炽灯的效率明显低于LED灯。LED灯之间,则是功率越高,效率越高。这很容易理解:整体功耗越低,LED驱动电路上消耗的能量占整体功耗比重越大,效率自然就越低。在总体功耗达到一定程度后,效率反而下降了,个人推测是由于灯泡内部空间过小,功率越大发热越严重,温度会严重影响电路效率。


  这里我们再次可以看到奇葩GE3W(94101),效率远超相同品牌相同额定功率的GE3W(11453)。主要是因为GE3W(94101)是6500K冷白光,冷白光LED本身效率就要比暖白光高;当然可能还有其他未知原因,比如照度计的敏感度。


  八、温度测试


  温度的测试也算是相对准确的一个测试。这个测试主要考察两个性能:温度控制和散热效率。温度控制的测试很简单,让灯泡点亮一段时间,测下xx温度即可。散热效率则没那么容易测,我想到的方法为:看点亮后壳体温度达到稳定态的时间。时间越短,说明内部电路与外壳之间的热阻越低,散热性能越好。


  就像用火烧铁棍的一端,另一端很快会觉得烫;而用火烧木棍的一段,另一端要烫起来就比较困难。这个方法只是定性对比下散热效率,实际会因为壳体材料的发射系数、环境温度、空气流动等误差因素的影响。


  测试方法为:先用精密温度计选择一致性较好的两根T型热电偶;校正偏差后;用数字温度计同时采集环境温度和灯具表面温度,每种至少采集10000点数据。得到的数据经过处理,可以得到需要的结论。


  实际测试时,所有灯具都处于开放空间(无风室内环境),灯具螺口朝下球体朝上。环境温度则较难控制(测试的时间跨度很大,基本每个灯具的测试时间都在两小时左右),所以这个测试中有部分环境温度较高,对部分灯具来说有失公平,结果仅供参考。总体环境温度在28~29度,白炽灯的测试较晚,环境温度在27度左右,用的是K型热电偶。

  


温升测试


  可以看到白炽灯的工作温度远远高于LED灯的工作温度。这点在冬季还好,在夏季会导致房间内温度升高,空调降温的费用也会随之升高。


  由于白炽灯的温度过高,LED灯具部分的温升曲线过于密集,下面另外提供一张只显示LED灯具的温升曲线

  

  LED灯具温升曲线


  这张图右边的图例是按照xx温度从高到低排列的。这是温升图,我们再来看看环境xx温度、灯体xx温度、温差之间的关系(忽视白炽灯)

  


  这张图紫色是环境xx温度,可以看到各次测试区别不算太大;**是灯具表面xx温度,可以看到大部分大功率灯具表面温度将近80度;红色是温升。很明显的是功率越高,温升越大。不过Philips3W是个例外,居然比Philips7.5W的温度还高。


  温度是LED寿命xx的杀手,壳体外的温度都这么高了,内部的温度肯定更高。散热做得特别好会不会导致壳体外温度特别高呢?散热做得再好,也不可能外部温度比内部温度高吧,倒是散热效率低的话,内部温度会比外部温度高出许多。


  我们再开看看散热效率。这个测试是从前面的测试数据中,找出各个灯泡的xx温度,再寻找灯泡首次达到xx温度的95%%u65F6,所耗费的时间。为什么是xx温度的95%%uFF0C而不直接是xx温度呢?一则95%%u5DF2经非常接近xx温度;二则灯泡到一定温度后,其表面温度会上下浮动,xx温度出现的时间反而不太准。

  


达到稳定温度耗时测试


  这个时间应该是越短越好。这里有两点需要注意:一个是白炽灯的稳定时间,一个是大功率LED的稳定时间。


  我们可以看到所有灯具中,白炽灯的耗时反而最短。这是白炽灯的散热xx吗?并不是。而是白炽灯热量发散主要靠热辐射,而LED灯具靠的热传导,两者有本质上的区别,所以无法比较。


  大功率LED灯则因为本身功耗高,温度上升本身的耗时就比较长。


  写到这里,忽然发现这个测试有硬伤:灯具内部达到稳定温度的时间会影响外部达到稳定温度的时间。有比较意义的应该是:相同额定功率的灯具,其达到稳定温度的耗时。


  品苑3W看起来散热做得不错;GE2W看起来非常差,则可能与其外壳是陶瓷的有关;Philips3W看起来散热做得还可以,但其xx温度太高了。不明白为什么会这样,查了下其内部电路只是简单的电容限流,按说电路效率是高的,若说恒流性能不好,LED超负荷工作了也不像,毕竟功率测试时,其实测功率还没达到标称功率呢。网上找了个拆解图,发现有个LED3未焊接,难道真是超功率使用了?--这是推测!

  



  Philips3W内部LED图


  九、频闪控制


  早期的镇流器荧光灯由于频闪严重而饱受诟病,后来出了电子荧光灯,频闪有所改善。市场上还有一种护眼灯,则xx没有频闪。虽然频闪肉眼感觉不到,但容易导致眼睛疲劳,已经有很多研究证明过这一点,IEEE也有风险提示。


  LED灯本来有专门的驱动电路,应该是很容易做到无频闪的。市电供电的产品,减少或xx频闪主要靠电容或者电感,电感体积太大,普通电解电容在灯泡内部的高温下容易出问题,钽电容成本很高,所以我对LED灯具如何控制频闪非常不放心。其实这次的测试,主角就是频闪控制。


  要测灯具的频闪,业余条件下只能使用光敏二极管。我选的是PT333-3C,其典型上升下降时间都是15uS,跟工频的10mS比起来差了几个数量级,可以忽略不计。影响测试精度的是其频率响应曲线。

  

  PT333-3C频率响应曲线


  图中我们可以看到,其对不同波长的入射光敏感度不同,这会导致不同光源,测出来的频闪与实际频闪有区别。正如之前所述,定性测试不求xx—也只能如此了。


  电路很简单,只要注意使用电池供电即可。如下图

  


  在各灯具提供40Lux照度距离处,将光敏管D1在对准灯具中心,示波器测量D1两端波形即可。

  


  看到这张图我相当无语:同一个品牌、同一个系列,不同功率的LED灯具,频闪差异居然可以这么大。比如OSRAM10w和OSRAM9W,一个只有 120mV,一个却达到1320mV,功率只差1w,频闪幅度却是整整11倍!GE3W(11452)和GE3W(94101)之间还要夸张,达到14.5倍!


  关于频闪,还有一点常常被忽视:大型吊灯通常会使用大量的相同型号灯泡,这些灯泡具有相同相位,频闪幅度则会叠加,导致比单个灯泡更严重的频闪。


  相同相位是什么意思呢?正弦波的波形大家都知道,所谓相同相位,就是说某个灯泡出于波峰时,其他灯泡也都处于波峰;某个灯泡出于波谷时,其他灯泡也处于波谷,则就是相同相位。既然存在这个频闪叠加的问题,那就来测下各个灯泡的相位吧。


  相位的测试用到两个上面的光敏电路图,其中一个对准白炽灯,一个对准待测光源,示波器同时采集两个输出,就可以得到以白炽灯为参考基准的相位。


转自中国照明网

技术支持:免费b2b网站   [免责申明]   [举报]    立即注册发布信息