点击上方 “ 畅学电子 ” 一键关注,轻松学习电子知识
随着便携产品日趋小巧轻薄,对电源管理芯片也提出更高的要求,诸如高集成度、高可靠性、低噪声、抗干扰、低功耗等。
便携产品的电源设计需要系统级思维,在开发手机、MP3、PDA、PMP、DSC等由电池供电的低功耗产品时,如果电源系统设计不合理,会影响到整个系统的架构、产品的特性组合、元件的选择、软件的设计以及功率分配架构等。
从便携式产品电源管理的发展趋势来看,需要考虑以下几个问题:1. 电源设计必须要从成本、性能和产品上市时间等整个系统设计来考虑;2. 便携产品日趋小巧轻薄化,必需考虑电源系统体积小、重量轻的问题;3. 选用电源管理芯片力求高集成度、高可靠性、低噪声、抗干扰、低功耗,突破散热瓶颈,延长电池寿命;4. 选用具有新技术的新型电源芯片进行方案设计,这是保证产品先进性的基本条件,也是便携产品电源管理的永恒追求。
选用电源管理芯片时应注意:选用生产工艺成熟、品质优秀的生产厂家产品;选用工作频率高的芯片,以降低周边电路的应用成本;选用封装小的芯片,以满足便携产品对体积的要求;选用技术支持好的生产厂家,方便解决应用设计中的问题;选用产品资料齐全、样品和DEMO易于申请、能大量供货的芯片;选用xxx好的芯片。
LDO线性低压差稳压器
LDO线性低压差稳压器是最简单的线性稳压器,由于其本身存在DC无开关电压转换,所以它只能把输入电压降为更低的电压。
LDO电流主通道在其内部是由一个MOSFET加一个过流检测电阻组成,肖特基二极管作反相保护,输出端的分压电阻取出返馈电去控制MOSFET的流通电流大小,EN使能端可从外部去控制它的工作状态,内部还设置过流保护、过温保护、信号放大、POWER-OK、基准源等电路,实际上LDO已是一多电路集成的SoC。LDO的ESD>4KV,HBM ESD>8KV。
LDO布线设计要点是考虑如何降低PCB板上的噪音和纹波,如何走好线是一个技巧加经验的工艺性细活,也是设计产品成功的关键之一。图1说明了如何设计走线电路图,掌握好电流回流的节点,有效的控制和降低噪音和纹波。优化布线方案是值得参考的。
图1:LDO布线电路方案
如果一个驱动图像处理器的LDO输入电源是从单节锂电池标称的3.6V,在电流为200mA时输出1.8V电压,那么转换效率仅为50%,因此在手机中产生一些发热点,并缩短了电池工作时间。
当采用1.5V主电源并需要降压至1.2V为DSP内核供电时,开关稳压器就没有明显的优势了。
理想的解决方案是采用一个VLDO稳压器,输入电压范围接近1V,其压差低于300mV,内部基准接近0.5V。这样的VLDO稳压器可以很容易地将电压从1.5V降至1.2V,转换效率为80%。VLDO的输出纹波可低于1mVP-P。将VLDO作为一个降压型开关稳压器的后稳压器就可容易地确保低纹波。
开关式DC/DC升降压稳压器
开关式DC/DC升降压稳压器按其功能分成Buck开关式DC/DC降压稳压器、Boost开关式DC/DC升压稳压器和根据锂电池的电压从4.2V降低到2.5V能自动切换降升压功能的Buck-Boost开关式DC/DC升降压稳压器。当输入与输出的电压差较高时,开关稳压器避开了所有线性稳压器的效率问题。
Buck开关式DC/DC降压稳压器是一种采用恒定频率、电流模式降压架构,内置主(P沟道MOSFET)和同步(N沟道MOSFET)开关。PWM控制的振荡器频率决定了它的工作效率和使用成本。选用开关频率高的DC/DC可以极大地缩小外部电感器和电容器的尺寸和容量,如超过2MHz的高开关频率。
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >
==> 前往 www.eeskill.com 学习更多知识!