如何正确运用激光干涉仪
1、负坡度
负坡度曲线向外运行和向内运行两个测试均出现向下的坡度。在整个轴线长度上,误差呈线性负增加,这表示激光系统测量的距离短于机床位置反馈系统指示的距离。出现负坡度的可能原因有以下两种:(1)光束准直调整不正确。如果轴线短于1m则可能是材料热膨胀补偿系数不正确、材料温度测量不正确或者波长补偿不正确。(2)俯仰和扭摆造成阿贝偏置误差、机床线性误差。
2、正坡度
正坡度曲线是指在整个轴线长度上,误差呈线性正递增。这种现象的产生有以下可能:(1)材料热膨胀补偿系数不正确、材料温度测量不正确或者波长补偿不正确。(2)俯仰和扭摆造成阿贝偏置误差、机床的线性误差。
3、周期性曲线
周期性曲线是整个轴线长度上的重复周期误差。沿轴的俯仰保持不变,但幅度可能变化。导致周期性曲线的可能原因主要是机床方面的问题,如丝杠或传动系统故障、编码器问题或故障、长型门式机床轨道的轴线直线度。
4、偏移
偏移是指去程和回程两次测试之间具有不变的垂直偏移。产生偏移曲线的可能原因主要是机床方面的问题,如反向间隙未补偿或不当补偿、车架与导轨之间存在间隙(松动)等。
5、燕尾状
在去程测试中出现向下的坡度的情况,回程测试为去程测试的镜像,去程和回程测试之间的偏差(或滞后或反向间隙)随轴线离开受驱动端而逐渐提高。产生燕尾状的可能原因主要是机床方面的问题,如滚珠丝杠扭转、导轨太紧、使用的误差补偿值不正确等。
6、正反向交叉线
正反向交叉线是指正向(向外)运行产生负坡度,而反向(向内)运行则产生正坡度。这是丝杠扭转的一个特殊例子,其中,单向线性误差补偿和单反向值已在控制器中设置。
激光干涉仪在振动计量中的应用
激光测振及其常用方法
一般振动测试大致可以分为两类。一类是测量设备和结构所存在的振动;另一类则是对设备或结构施加某种激励,对其产生的振动进行测量。此类测振的目的是研究设备或结构的力学动态特性,然后根据对所测得的振动信号进行求和、平均、积分、微分等处理,计算出被测点的位移或速度、加速度和振动频率;或者对所测得的振动信号在时域、频域内作进一步地分析和处理,如谱分析、相关分析等,进而确定被测对象的固有频率、阻尼比、刚度、振型等振动参数,确定被测对象的频率响应特性。激光测量这种非接触测量由于其良好的精准性和实时性,已经成为测量领域的热点。同时由于电子学和光学技术的飞速发展,光电检测已经成为非接触测量的一种主要方式。
激光干涉法
利用激光的干涉特性,以激光的波长等参数为基础,对元件的振动进行测量的方法叫激光干涉测振法。在振动冲击计量测试中,我们经常碰到量值溯源的问题,在量值溯源与传递系统链表里,振动冲击计量基准可以溯源到基本量———长度和时间。振动和冲击校准设备采用这种量值复现方式进行传感器的校准时,称其为“绝1对校准”。激光干涉仪是不可缺少的部分,其输出的多普勒信号把已知的激光波长和振动的位移量对应起来,是一种绝1对的测量方法。目前在振动和冲击专业中大量借助于激光干涉技术实现量值的复现,其具体实现就是采用激光干涉仪。
激光干涉测量方法作为一种重要的非接触式无损探测方法,日益得到广泛的应用。然而该测量系统多采用各种分立的玻璃光学元件构成光路,不仅结构复杂,而且对光学元件的安装、调试都有极苛刻的机械精度要求,灵活性、重复性较差,尤其是对探测系统位置的设置在许多重要场合的应用受到了限制。光纤传感技术是近几十年来迅速发展起来的一门新型科学。与传统的各类传感器相比,光纤传感器具有一系列独特的优点,灵敏度高、抗电磁干扰、耐腐蚀、耐高压、防爆阻燃、光路可绕曲性好、几何形状具有多方面适应性等,使其成为在诸多环境下的有效测量手段。
激光干涉仪的使用方法:
1、开机:接通电源打开电源开关,1分钟后开始检测。(因为刚开机激光器不稳定)
2、光路调整:旋上适合的标准镜头使标准镜头的星点对准寻星窗口中间的黑点,显示器上显示完整的圆形图像。
显示器圆形图像
3、透镜面形检测:调节沉座到被检透镜的适合尺寸,(建议大批量固定透镜的检测,自己加工固定的沉座)放上透镜调节高度和透镜调节钮使透镜的星点与标准镜头的星点重合,观测显示器是否出现干涉条纹,条纹越少精度越高。干涉图像与对准系统同步,无需切换,任何人都能简单操作。高度调节结构选择加长的测试轨道来配合测量尺寸,可简便的测量出曲率半径。
4、透镜曲率半径检测:开启标尺电源开关(清零),调整图像到看清直线干涉条纹(3条到5条),凸透镜向上调节高度(凹透镜向下调节高度)到第2个星点出现的时候调节标准镜头调节旋钮,使图像出现猫眼像,标尺移动的数值就为被测透镜的曲率半径。