实现了催化裂化汽油的良性定向催化转化,从而达到了降低烯烃含量、维待辛烷值基本不变以生产清洁汽油的目的。其工艺流程如图5所示。工业化应用结果表明,可使催化裂化汽油烯烃含量降到20%(体积分数)以下,且维持辛烷值不变,使催化裂化装图5 汽油辅助反应器改质技术工艺流程示意图置直接生产出烯烃含量合格的高品质清洁汽油。改质过程损失小,只占整个重油催化裂化装置物料平衡的0.8%(质量分数),且操作与调变灵活,通过调整改质反应器操作,可提高丙烯产率3%左右。
同时再生催化剂经斜管进入提升管反应器的一侧易形成偏流;且使得催化剂颗粒群具有侧向速度,在其向上提升过程中与提升管器壁反复碰撞、弹射,形成“S”型运动轨迹,直到一定高度后才能消失。这就加剧了提升管下部区域,由边壁效应所造成径向分布不均匀状况,从模拟试验中可看出,目前的工业装置中催化剂的径向密度分布,边壁比中心区密度高出3倍左右。
提升管反应器的发展.提升管反应器已广泛应用于重油催化裂化,但仍还有不少值得研究和改进之处,特别是为了提高轻质油收率并直接生产清洁油品,近年来出现了不同形式反应器系统的重油催化裂化工艺技术,如两段提升管催化裂化技术(TSRFCC)、多产异构烷烃催化裂化技术(MIP)以及催化裂化汽油辅助反应器改质技术等。